LIU Yuhuan, GUAN Rui, CAO Leipeng, et al. Modification of Chitosan-Pectin Beads Adsorbent and Its Application for the Removal of Pb (II) from C-phycocyanin[J]. Science and Technology of Food Industry, 2023, 44(22): 68−75. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020098.
Citation: LIU Yuhuan, GUAN Rui, CAO Leipeng, et al. Modification of Chitosan-Pectin Beads Adsorbent and Its Application for the Removal of Pb (II) from C-phycocyanin[J]. Science and Technology of Food Industry, 2023, 44(22): 68−75. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020098.

Modification of Chitosan-Pectin Beads Adsorbent and Its Application for the Removal of Pb (II) from C-phycocyanin

More Information
  • Received Date: February 12, 2023
  • Available Online: September 19, 2023
  • Chitosan-pectin gel beads (CPB) have high potential for removing heavy metals from food. This study aimed to improve their stability, recyclability, and adsorption capacity by modified CPB with gelatin (Gel) and carboxymethyl cellulose sodium (CMC). The structural characteristics of the modified CPBs were characterized using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), Zeta potential, scanning electron microscopy (SEM), pore size distribution analysis (BET), X-ray photoelectron spectroscopy (XPS), specific surface area analysis. The adsorption-resolution conditions of modified CPB were optimized, and their actual removal efficiency for Pb(II) in C-phycocyanin was evaluated. Results showed that CMC-modified CPB (CMC-CPB) had higher thermal stability, rougher and more porous surface, larger specific surface area (20.28±1.35 m2/g), lower zeta potential, stronger metal ion adsorption capacity, and higher regeneration efficiency compared with CPB and Gel-CPB. FTIR showed the functional group of CPB had significant difference after modification, and the main group in CPB were carboxyl, hydroxyl, and amino groups. TG analysis presented the thermal stability of CMC-CPB was higher than that of CPB and Gel-CPB. XPS analysis showed CMC-CPB had the strongest absorption peak for Pb(II). The optimal pH and temperature for the three adsorbents (CPB, Gel-CPB, and CMC-CPB) to remove Pb(II) were 6.0 and 60 ℃, respectively. The Pb(II) adsorption process of all three adsorbents fit the Langmuir isotherm model (R2=0.9543~0.9811) and the pseudo-second-order kinetic model (R2=0.9963~0.9991), and the adsorption process belonged to the monolayer chemical adsorption, involving the complexation of -COO, -OH, -CO-NH, and Pb(II). Based on the Langmuir model curve, the maximum adsorption capacity (qmax) of CMC-CPB for Pb(II) was 69.37 mg/g, significantly higher than that of Gel-CPB and CPB (P<0.05). Combing application effect of three adsorbents in C-phycocyanin, CMC-CPB showed a great prospect to efficiently remove Pb(II) in food of algae and C-phycocyanin at low-cost and environment friendly.
  • [1]
    CALELLA P, DIO M D, CERULLO G, et al. Antioxidant, immunomodulatory, and anti-inflammatory effects of Spirulina in disease conditions:a systematic review[J]. International Journal of Food Sciences and Nutrition,2022,196:46−53.
    [2]
    关瑞, 王玉, 曹雷鹏, 等. 螺旋藻中分析级藻蓝蛋白的高效制备[J]. 南昌大学学报(理科版),2023,47(2):157−164

    GUAN R, WANG Y, CAO L P, et al. Efficient production of analytical-grade phycocyanin from Spirulina platensis[J]. Journal of Nanchang University (Natural Science),2023,47(2):157−164.
    [3]
    LAFARGA T, FERNANDEZ-SEVILLA J M, LOPEZ C G, et al. Spirulina for the food and functional food industries[J]. Food Research International,2020,137:109−356.
    [4]
    SONI R A, SUDHAKAR K, RANA RS. Spirulina from growth to nutritional product:A review[J]. Trends in Food Scince & Technology,2017,69:157−171.
    [5]
    BLANCO-VIEITES M, SUAREZ-MONTES D, DELGADO F, et al. Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry[J]. Algal Research,2022,64:102700. doi: 10.1016/j.algal.2022.102700
    [6]
    彭晓夏, 崔泾洁, 逯晓青, 等. 向日葵盘低酯化果胶对重金属离子Pb2+吸附性能研[J]. 食品工业科技,2022,43(6):25−32

    PENG X X, CUI J J, LU X Q, et al. Study on the absorption of heavy metal ion pb2+ by the low methoxy pectin from sunflower heads[J]. Science and Technology of Food Industry,2022,43(6):25−32.
    [7]
    LIU J H, ZHU C W, LI Z P, et al. Screening of Spirulina strains for high copper adsorption capacity through Fourier transform infrared spectroscopy[J]. Frontiers in Microbiology,2022,13:1−10.
    [8]
    XIANG H R, MIN X B, TANG C J, et al. Recent advances in membrane filtration for heavy metal removal from wastewater:A mini review[J]. Journal of Water Process Engineering,2022,49:103023. doi: 10.1016/j.jwpe.2022.103023
    [9]
    XU Z, ZHANG Q R, LI X C, et al. A critical review on chemical analysis of heavy metal complexes in water/wastewater and the mechanism of treatment methods[J]. Chemical Engineering Journal,2022,429:131688. doi: 10.1016/j.cej.2021.131688
    [10]
    WANG R S, LIANG R H, DAI T T, et al. Pectin-based adsorbents for heavy metal ions:A review[J]. Trends in Food Science & Technology,2019,91:319−329.
    [11]
    ARACHCHIGE M P M, MU T H, MA M M. Effect of high hydrostatic pressure-assisted pectinase modification on the Pb2+ adsorption capacity of pectin isolated from sweet potato residue[J]. Chemosphere,2021,262:128102. doi: 10.1016/j.chemosphere.2020.128102
    [12]
    CHANG C, ZHAN Y F, WU Y, et al. TiO2/rectorite-trapped cellulose composite nanofibrous mats for multiple heavy metal adsorption[J]. International Journal of Biological Macromolecules,2021,183:245−253. doi: 10.1016/j.ijbiomac.2021.04.085
    [13]
    AHMAD M, MANZOOR K, IKRAM S. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions:A review[J]. International Journal of Biological Macromolecules,2017,105:190−203. doi: 10.1016/j.ijbiomac.2017.07.008
    [14]
    SHAO Z Y, LU J L, DING J, et al. Novel green chitosan-pectin gel beads for the removal of Cu(II), Cd(II), Hg(II) and Pb(II) from aqueous solution[J]. International Journal of Biological Macromolecules,2021,176:217−225. doi: 10.1016/j.ijbiomac.2021.02.037
    [15]
    王学栋, 李娅, 戴涛涛, 等. 果胶/聚间苯二胺凝胶珠的制备和表征及其对铅吸附性能的研究[J]. 食品工业科技,2021,42(15):85−95

    WANG X D, LI Y, DAI T T, et al. Preparation and characterization of pectin/poly (m-phenylenediamine) gel beads and their adsorption properties for lead (II)[J]. Science and Technology of Food Industry,2021,42(15):85−95.
    [16]
    NIE Z P, WAN C P, CHEN C Y, et al. Comprehensive evaluation of the postharvest antioxidant capacity of Majiayou pomelo harvested at different maturities based on PCA[J]. Antioxidants,2019,8(5):8050136.
    [17]
    ZHANG C, ZHU X X, ZHANG F P, et al. Improving viscosity and gelling properties of leaf pectin by comparing five pectin extraction methods using green tea leaf as a model material[J]. Food Hydrocolloids,2020,98:105246. doi: 10.1016/j.foodhyd.2019.105246
    [18]
    罗君兰, 刘玉珍, 熊华, 等. 不同提取方法对白木通果胶的结构及凝胶性与乳化性的影响[J]. 南昌大学学报:理科版,2020,44(5):430−438

    LUO JL, LIU YZ, XIONG H, et al. Effects of different extraction methods on the structure, gelatinization and emulsification of Albatron pectin[J]. Journal of Nanchang University:Science Edition,2020,44(5):430−438.
    [19]
    ZHU W, YANG J, HU D, et al. Removing Pb2+ with a pectin-rich fiber from sisal waste[J]. Food & Function,2021,12(6):2418−2427.
    [20]
    ZHANG W, SONG J, HE Q, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials,2019,384:121445.
    [21]
    KARMAKAR M, MONDAL H, MAHAPATRA M, et al. Pectin-grafted terpolymer super-adsorbent via N-H activated strategic protrusion of monomer for removals of Cd(II), Hg(II) and Pb(II)[J]. Carbohydrate Polymers,2019,206:778−791. doi: 10.1016/j.carbpol.2018.11.032
    [22]
    ONDITI M, ADELODUN A A, CHANGAMU E O, et al. Removal of Pb2+ and Cd2+ from drinking water using polysaccharide extract isolated from cactus pads ( Opuntia ficus indica)[J]. Journal of Applied Polymer Science,2016,133(38):43913.
    [23]
    IBARRA-RODRIGUEZ D, LIZARDI-MENDOZA J, LOPEZ-MALDONADO E A, et al. Capacity of ‘Nopal’ pectin as a dual coagulant-flocculant agent for heavy metals removal[J]. Chemical Engineering Journal,2017,323:19−28. doi: 10.1016/j.cej.2017.04.087
    [24]
    DARVANJOOGHI M, DAVOODI S M, DURSUN A, et al. , Application of treated eggplant peel as a low-cost adsorbent for water treatment toward elimination of Pb(II):Kinetic modeling and isotherm study[J]. Adsorption Science & Technology,2018,36(3-4):1112−1143.
    [25]
    ZHOU Y, LIU Z, BO A, et al. Simultaneous removal of cationic and anionic heavy metal contaminants from electroplating effluent by hydrotalcite adsorbents with disulfide (S2) intercalation[J]. Journal of Hazardous Materials,2020,382:121111. doi: 10.1016/j.jhazmat.2019.121111
    [26]
    FENG G R, MA J C, ZHANG X P, et al. Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage[J]. Journal of Colloid & Interface Science,2019,538:132−141.
    [27]
    LIANG S, GUO X Y, FENG N C, et al. Isotherms, kinetics, and thermodynamic studies of adsorption of Cu(II) from aqueous solutions by Mg2+/K+ type orange peel adsorbents[J]. Journal of Hazardous Materials,2010,174(1-3):756−762. doi: 10.1016/j.jhazmat.2009.09.116
    [28]
    MALIK P K. Dye removal from wastewater using activated carbon developed from sawdust:Adsorption equilibrium and kinetics[J]. Journal of Hazardous Materials,2004,113(1-3):81−88. doi: 10.1016/j.jhazmat.2004.05.022
    [29]
    YU LL, JIANG LN, WANG SY, et al. Pectin microgel particles as high adsorption rate material for methylene blue:Performance, equilibrium, kinetic, mechanism and regeneration studies[J]. International Journal of Biological Macromolecules,2018,112:383−389. doi: 10.1016/j.ijbiomac.2018.01.193
    [30]
    NIU H Y, LI X T, LI J S. Dithiocarbamate modification of activated carbon for the efficient removal of Pb (Ⅱ), Cd (Ⅱ), and Cu (Ⅱ) from wastewater[J]. New Journal of Chemistry,2022,46(11):5234−5245. doi: 10.1039/D1NJ05293D
  • Cited by

    Periodical cited type(13)

    1. 张莉,李桐,白茹,魏晓明,王梦倩,逄金柱,张智勇. 酵母发酵对挂面食用品质和消化特性的影响. 粮食与饲料工业. 2025(01): 57-61 .
    2. 王丹,李河,周松华,李会珍,侯天宇. 超高压预处理紫苏蛋白与大豆蛋白复配蛋白肉的工艺条件优化. 中国调味品. 2024(01): 18-24 .
    3. 张伟峰,黄泽华,王玉坤,张剑,赵萌萌,崔晚晚,安艳霞,殷贵鸿,周朋辉,赵阳. 复合菌发酵对非油炸方便面品质的影响. 食品科学. 2024(05): 210-216 .
    4. 刘安伟,吕莹果,邱学明,徐卫. 信阳手工挂面产业的现状与发展路径研究. 粮油科学与工程. 2024(02): 49-51 .
    5. 郭佳,刘翀,郑学玲. 醒发工艺对挂面品质及风味的影响. 食品与发酵工业. 2024(11): 247-255 .
    6. 杨园园,郇美丽,李桐,魏晓明,赵希雷,刘琪龙,宋燕燕,黄鑫蕾,张智勇,张毅,赵艺媛,解树珍. 不同厚度发酵挂面品质研究. 食品与发酵科技. 2024(05): 89-94+126 .
    7. 王文琪,王爱红,刘振海,陈恒均,黄玉军. 响应面优化乳酸菌发酵空心挂面制作工艺. 现代食品科技. 2024(09): 144-152 .
    8. 宁恒,马森,李力. 麦麸膳食纤维对发酵挂面品质的影响. 食品工业科技. 2023(18): 115-122 . 本站查看
    9. 徐蓓怡,王婧萱,李新宸,苏柯瑞,渠冰洁,张霞,梁赢,王金水. 酵母种类和发酵方式对冻融前后冷冻熟制空心面品质的影响. 食品研究与开发. 2023(17): 76-81 .
    10. 吴静仪,冯红,吕庆云,王学东,陈曦,蒋修军,万芳. 泡泡青蔬菜粉对面粉、面团性质影响及其挂面加工工艺优化. 食品工业科技. 2023(19): 244-251 . 本站查看
    11. 王纯,宫兆海,代福娟,操宇,刘君也,李志建. 不同种属酵母菌对发酵挂面品质的影响研究. 食品科技. 2023(10): 129-133+140 .
    12. 周慧超,刘翀,郑学玲. 添加不同粒度小麦颗粒粉对面团特性及挂面品质的影响. 食品与发酵工业. 2023(22): 86-93 .
    13. 权苗苗,许飞,陈洁,汪磊,谢亚敏,曹菲. 多菌种酵制多孔挂面的品质及风味物质分析. 河南工业大学学报(自然科学版). 2022(05): 53-60 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (101) PDF downloads (22) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return