ZOU Yiqian, CHEN Haiqiang, PAN Zhuoguan, et al. Effects of Gel Properties and Water Migration during Ultra-High Pressure Coupled Heat Treatment on Bighead Carp Surimi[J]. Science and Technology of Food Industry, 2023, 44(23): 70−79. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020083.
Citation: ZOU Yiqian, CHEN Haiqiang, PAN Zhuoguan, et al. Effects of Gel Properties and Water Migration during Ultra-High Pressure Coupled Heat Treatment on Bighead Carp Surimi[J]. Science and Technology of Food Industry, 2023, 44(23): 70−79. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020083.

Effects of Gel Properties and Water Migration during Ultra-High Pressure Coupled Heat Treatment on Bighead Carp Surimi

More Information
  • Received Date: February 08, 2023
  • Available Online: October 07, 2023
  • In order to elucidate the mechanism of the changes in gel properties of bighead carp surimi during ultra-high pressure coupled heat treatment, this paper investigated the changes in gel properties, protein structure and water migration of bighead carp surimi during ultra-high pressure coupled heat treatments (300 MPa/5 min, 40 ℃/30 min, 90 ℃/20 min), and carried out clustered heat maps and Pearson correlation analyses. The results showed that ultra-high pressure coupled heat treatment significantly improved the gel properties of bighead carp surimi (P<0.05). The gel strength, texture and whiteness of bighead carp surimi gel showed an increasing trend with ultra-high pressure, ultra-high pressure combined with one-stage heat treatment, and ultra-high pressure combined with two-stage heat treatment. The gel strength and whiteness of the ultra-high pressure coupled heat treatment (300PSH) surimi gels increased by 477.75% and 43.38%, respectively, compared to the atmospheric pressure treated samples (0.1P). The proportion of β-folded structure in the proteins of bighead carp surimi gels increased significantly (P<0.05) during the different treatments, and myosin heavy chain cross-linked aggregation. Meanwhile, the content of active sulfhydryl groups and surface hydrophobicity of surimi gel were significantly reduced (P<0.05), and the proteins formed a denser and more ordered network structure through disulfide bonds and hydrophobic interaction, leading to the migration of immobile water to bound water, which ultimately resulted in significant improvements in the gel strength, texture properties, whiteness and water holding capacity of surimi gel. This study can provide theoretical basis for application of ultra-high pressure coupled heat treatment technology and development of bighead surimi products.
  • [1]
    刘月月, 洪惠, 李大鹏, 等. 鳙鱼各部位成分组成及营养功能评价[J]. 科学养鱼,2020(11):73−74. [LIU Yueyue, HONG Hui, LI Dapeng, et al. Evaluation on composition and nutritional function of various parts of bighead carp[J]. Scientific Fish Culture,2020(11):73−74.

    LIU Yueyue, HONG Hui, LI Dapeng, et al. Evaluation on composition and nutritional function of various parts of bighead carp[J]. Scientific Fish Culture, 202011): 7374.
    [2]
    刘春花, 梁燕, 周爱梅, 等. 超高压对鳙鱼肌动球蛋白物化特性的影响[J]. 食品工业科技,2017,38(16):29−34,42. [LIU Chunhua, LIANG Yan, ZHOU Aimei, et al. Effect of ultra-high pressure on the physicochemical properties of actomyosin from bighead crap ( Arstichthys nobilis)[J]. Science and Technology of Food Industry,2017,38(16):29−34,42.

    LIU Chunhua, LIANG Yan, ZHOU Aimei, et al. Effect of ultra-high pressure on the physicochemical properties of actomyosin from bighead crap (Arstichthys nobilis)[J]. Science and Technology of Food Industry, 2017, 3816): 2934,42.
    [3]
    郭梦, 武瑞赟, 马俪珍, 等. 鱼糜制品及其凝胶特性研究进展[J]. 中国水产,2020(2):83−85. [GUO Meng, WU Ruiyun, MA Lizhen, et al. Research progress of surimi products and their gel properties[J]. China Fisheries of Fisheries,2020(2):83−85.

    GUO Meng, WU Ruiyun, MA Lizhen, et al. Research progress of surimi products and their gel properties[J]. China Fisheries of Fisheries, 20202): 8385.
    [4]
    GUO M, LIU S, ISMAIL M, et al. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide[J]. Food Chemistry,2017,227:219−226. doi: 10.1016/j.foodchem.2017.01.050
    [5]
    张玉洁, 张金闯, 陈琼玲, 等. 鱼糜蛋白制品及其加工技术[J]. 中国食品学报, 2022, 22(1):389−400. [ZHANG Yujie, ZHANG Jinchuang, CHEN Qiongling, et al. Surimi protein products and their processing technology [J]. Chinese Journal of Food Science, 2019, 22(1):389−400.

    ZHANG Yujie, ZHANG Jinchuang, CHEN Qiongling, et al. Surimi protein products and their processing technology [J]. Chinese Journal of Food Science, 2019, 22(1): 389−400.
    [6]
    LIANG Y, GUO B, ZHOU A, et al. Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp ( Aristichthys nobilis) surimi gels[J]. Journal of Food Processing and Preservation,2017,41(5):e13155. doi: 10.1111/jfpp.13155
    [7]
    LI X, HE X, MAO L, et al. Modification of the structural and rheological properties of β-lactoglobulin/ κ-carrageenan mixed gels induced by high pressure processing[J]. Journal of Food Engineering,2020,274(C):109851.
    [8]
    CHEN H, ZOU Y, ZHOU A, et al. Insight into the effect of ice addition on the gel properties of Nemipterus virgatus surimi gel combined with water migration[J]. Foods,2021,10(8):1815. doi: 10.3390/foods10081815
    [9]
    刘芳芳, 林婉玲, 李来好, 等. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理[J]. 食品科学, 2020, 41(14):15−22. [LIU Fangfang, LIN Wanling, LI Laihao, et al. Protein change mechanism during processing and gel formation of sea bass surimi[J]. Food Science, 2019, 41(14):15−22.

    LIU Fangfang, LIN Wanling, LI Laihao, et al. Protein change mechanism during processing and gel formation of sea bass surimi[J]. Food Science, 2019, 41(14): 15−22.
    [10]
    周爱梅, 黄文华, 刘欣, 等. 转谷氨酰胺酶对鳙鱼鱼糜凝胶特性的影响[J]. 食品与发酵工业,2003,29(8):27−31. [ZHOU Aimei, HUANG Wenhua, LIU Xin, et al. Effect of transglutaminase on gel properties of bighthys surimi[J]. Food and Fermentation Industry,2003,29(8):27−31.

    ZHOU Aimei, HUANG Wenhua, LIU Xin, et al. Effect of transglutaminase on gel properties of bighthys surimi[J]. Food and Fermentation Industry, 2003, 298): 2731.
    [11]
    CHEN H, ZHOU A, BENJAKUL S, et al. The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi[J]. LWT-Food Science & Technology,2021,150:112086.
    [12]
    PAN T, GUO H, LI Y, et al. The effects of calcium chloride on the gel properties of porcine myosin- κ-carrageenan mixtures[J]. Food Hydrocolloids,2017,63:467−477. doi: 10.1016/j.foodhyd.2016.09.026
    [13]
    秦影, 汤海青, 欧昌荣, 等. 超高压处理对大黄鱼鱼糜水分状态和蛋白质结构的影响[J]. 农业工程学报,2015,31(23):246−252. [QIN Ying, TANG Haiqing, OU Changrong, et al. Effects of ultra-high pressure treatment on water status and protein structure of large yellow croaker surimi[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(23):246−252.

    QIN Ying, TANG Haiqing, OU Changrong, et al. Effects of ultra-high pressure treatment on water status and protein structure of large yellow croaker surimi[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 3123): 246252.
    [14]
    MAQSOOD S, BENJAKUL S, BALANGE A K. Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage[J]. Food Chemistry,2012,130(2):408−416. doi: 10.1016/j.foodchem.2011.07.065
    [15]
    ZHOU A, CHEN H, ZOU Y, et al. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration[J]. Food Research International,2022,157:111230. doi: 10.1016/j.foodres.2022.111230
    [16]
    GÓMEZ-GUILLÉN M C, BORDERÍAS A J, MONTERO P. Chemical interactions of nonmuscle proteins in the network of sardine ( Sardina pilchardus) muscle gels[J]. LWT-Food Science and Technology,1997,30(6):602−608. doi: 10.1006/fstl.1997.0239
    [17]
    WANG L, ZHANG M, BHANDARI B, et al. Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel[J]. Food Research International,2016,86:131−139. doi: 10.1016/j.foodres.2016.06.007
    [18]
    TAN F J, LAI K M, HSU K C. A comparative study on physical properties and chemical interactions of gels from tilapia meat pastes induced by heat and pressure[J]. Journal of Texture Studies,2010,41(2):153−170. doi: 10.1111/j.1745-4603.2010.00219.x
    [19]
    YANG H, TAO F, CAO G, et al. Stability improvement of reduced-fat reduced-salt meat batter through modulation of secondary and tertiary protein structures by means of high pressure processing[J]. Meat Science,2021,176:108439. doi: 10.1016/j.meatsci.2021.108439
    [20]
    BUAMARD N, BENJAKUL S. Combination effect of high pressure treatment and ethanolic extract from coconut husk on gel properties of sardine surimi[J]. LWT,2018,91:361−367. doi: 10.1016/j.lwt.2018.01.074
    [21]
    CANDO D, HERRANZ B, BORDERÍAS A J, et al. Effect of high pressure on reduced sodium chloride surimi gels[J]. Food Hydrocolloids,2015,51:176−187. doi: 10.1016/j.foodhyd.2015.05.016
    [22]
    LU H, LIANG Y, ZHANG X, et al. Effects of cathepsins on gel strength and water-holding capacity of myofibrillar protein gels from bighead carp ( Aristichthys nobilis) under a hydroxyl radical-generation oxidizing system[J]. Foods,2022,11(3):330. doi: 10.3390/foods11030330
    [23]
    RIBEIRO A T, ELIAS M, TEIXEIRA B, et al. Effects of high pressure processing on the physical properties of fish ham prepared with farmed meagre ( Argyrosomus regius) with reduced use of microbial transglutaminase[J]. Food Science & Technology,2018,96:296−306.
    [24]
    LI Z, WANG J, ZHENG B, et al. Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan[J]. Food Chemistry,2019,291:117−125. doi: 10.1016/j.foodchem.2019.03.146
    [25]
    ZHAO Z, MU T, ZHANG M, et al. Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure[J]. Food and Bioprocess Technology,2018,11(9):1719−1732. doi: 10.1007/s11947-018-2137-y
    [26]
    VELAZQUEZ G, MÉNDEZ-MONTEALVO M G, WELTI-CHANES J, et al. Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins[J]. LWT,2021,146:111389. doi: 10.1016/j.lwt.2021.111389
    [27]
    CANDO D, BORDERÍAS A J, MORENO H M. Combined effect of aminoacids and microbial transglutaminase on gelation of low salt surimi content under high pressure processing[J]. Innovative Food Science & Emerging Technologies,2016,36:10−17.
    [28]
    ZHU Z, LANIER T C, FARKAS B E, et al. Transglutaminase and high pressure effects on heat-induced gelation of Alaska pollock ( Theragra chalcogramma) surimi[J]. Journal of Food Engineering,2014,131:154−160. doi: 10.1016/j.jfoodeng.2014.01.022
    [29]
    CANDO D, MORENO H M, TOVAR C A, et al. Effect of high pressure and/or temperature over gelation of isolated hake myofibrils[J]. Food and Bioprocess Technology,2014,7(11):3197−3207. doi: 10.1007/s11947-014-1279-9
    [30]
    CHEN Y, XU A, YANG R, et al. Myofibrillar protein structure and gel properties of trichiurus haumela surimi subjected to high pressure or high pressure synergistic heat[J]. Food and Bioprocess Technology,2020,13(4):589−598. doi: 10.1007/s11947-020-02416-x
    [31]
    ZHANG Z, YANG Y, TANG X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry,2015,188:111−118. doi: 10.1016/j.foodchem.2015.04.129
    [32]
    LIU H, XU Y, ZU S, et al. Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality:A review[J]. Foods,2021,10(8):1872. doi: 10.3390/foods10081872
    [33]
    WANG J, LI Z, ZHENG B, et al. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream ( Nemipterus virgatus) myosin[J]. LWT,2019,100:381−390. doi: 10.1016/j.lwt.2018.10.053
    [34]
    LIU R, ZHAO S, LIU Y, et al. Effect of pH on the gel properties and secondary structure of fish myosin[J]. Food Chemistry,2010,121(1):196−202. doi: 10.1016/j.foodchem.2009.12.030
    [35]
    BOURAOUI M, NAKAI S, LI-CHAN E. In situ investigation of protein structure in Pacific whiting surimi and gels using Raman spectroscopy[J]. Food Research International,1997,30(1):65−72. doi: 10.1016/S0963-9969(97)00020-3
    [36]
    ZHANG Z, YANG Y, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry,2017,217:678−686. doi: 10.1016/j.foodchem.2016.09.040
    [37]
    XUE S, YANG H, LIU R, et al. Applications of high pressure to pre-rigor rabbit muscles affect the functional properties associated with heat-induced gelation[J]. Meat Science,2017,129:176−184. doi: 10.1016/j.meatsci.2017.03.006
  • Cited by

    Periodical cited type(10)

    1. 舒丽枝,时苗苗,张牧焓,卞欢,徐为民,王道营. 卟啉类化合物和游离铁对鸡胸肉肌原纤维蛋白理化特性的影响. 江苏农业学报. 2024(10): 1952-1961 .
    2. 王晓芸,高霞,尤娟,尹涛,刘茹. 超声预处理对鲜湿鱼粉品质的影响及其作用机制. 食品科学. 2024(23): 213-220 .
    3. 韩馨蕊,李颖,刘苗苗,范鑫,冯莉,曹云刚. 安石榴苷与焦磷酸钠对肌原纤维蛋白氧化稳定性及凝胶性能的影响. 食品科学. 2022(08): 15-21 .
    4. 莫玲,香庆文,李晶晶,叶玉萍,赵超超. 孕哺期摄入氧化乳蛋白对子代小鼠机体氧化还原状态的影响. 食品科学技术学报. 2021(03): 122-128 .
    5. 梁恽红,卢涵,张香美. 蛋白二、三级结构对鱼糜凝胶质构和持水力的影响及其测定方法研究进展. 东北农业大学学报. 2021(10): 87-96 .
    6. 谢晨,熊泽语,李慧,金素莱曼,陈百科,包海蓉. 金针菇多糖对三文鱼片冻藏期间品质的影响. 食品与发酵工业. 2021(22): 178-183 .
    7. 刘芳芳,林婉玲,李来好,吴燕燕,杨少玲,黄卉,杨贤庆,林织. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理. 食品科学. 2020(14): 15-22 .
    8. 冯程,Manonose Tariro Upenyu,李志豪,王萍,余雄伟,付琴利,李述刚. 丙烯醛对籽瓜种仁蛋白质结构及凝胶特性影响研究. 食品科技. 2019(09): 66-71 .
    9. 刁小琴,关海宁,李杨,刘丽美. 高压均质对肌原纤维蛋白乳化特性及结构的影响. 食品与发酵工业. 2019(18): 107-112 .
    10. 郭兆斌,马纪兵,张丽,陈骋,陈立业,刘勇,韩玲,余群力. 传统风干牦牛肉加工过程中肌原纤维蛋白氧化对氨基酸的影响. 食品与发酵工业. 2019(22): 202-207+212 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (105) PDF downloads (13) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return