Citation: | ZOU Yiqian, CHEN Haiqiang, PAN Zhuoguan, et al. Effects of Gel Properties and Water Migration during Ultra-High Pressure Coupled Heat Treatment on Bighead Carp Surimi[J]. Science and Technology of Food Industry, 2023, 44(23): 70−79. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020083. |
[1] |
刘月月, 洪惠, 李大鹏, 等. 鳙鱼各部位成分组成及营养功能评价[J]. 科学养鱼,2020(11):73−74. [LIU Yueyue, HONG Hui, LI Dapeng, et al. Evaluation on composition and nutritional function of various parts of bighead carp[J]. Scientific Fish Culture,2020(11):73−74.
|
[2] |
刘春花, 梁燕, 周爱梅, 等. 超高压对鳙鱼肌动球蛋白物化特性的影响[J]. 食品工业科技,2017,38(16):29−34,42. [LIU Chunhua, LIANG Yan, ZHOU Aimei, et al. Effect of ultra-high pressure on the physicochemical properties of actomyosin from bighead crap ( Arstichthys nobilis)[J]. Science and Technology of Food Industry,2017,38(16):29−34,42.
|
[3] |
郭梦, 武瑞赟, 马俪珍, 等. 鱼糜制品及其凝胶特性研究进展[J]. 中国水产,2020(2):83−85. [GUO Meng, WU Ruiyun, MA Lizhen, et al. Research progress of surimi products and their gel properties[J]. China Fisheries of Fisheries,2020(2):83−85.
|
[4] |
GUO M, LIU S, ISMAIL M, et al. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide[J]. Food Chemistry,2017,227:219−226. doi: 10.1016/j.foodchem.2017.01.050
|
[5] |
张玉洁, 张金闯, 陈琼玲, 等. 鱼糜蛋白制品及其加工技术[J]. 中国食品学报, 2022, 22(1):389−400. [ZHANG Yujie, ZHANG Jinchuang, CHEN Qiongling, et al. Surimi protein products and their processing technology [J]. Chinese Journal of Food Science, 2019, 22(1):389−400.
ZHANG Yujie, ZHANG Jinchuang, CHEN Qiongling, et al. Surimi protein products and their processing technology [J]. Chinese Journal of Food Science, 2019, 22(1): 389−400.
|
[6] |
LIANG Y, GUO B, ZHOU A, et al. Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp ( Aristichthys nobilis) surimi gels[J]. Journal of Food Processing and Preservation,2017,41(5):e13155. doi: 10.1111/jfpp.13155
|
[7] |
LI X, HE X, MAO L, et al. Modification of the structural and rheological properties of β-lactoglobulin/ κ-carrageenan mixed gels induced by high pressure processing[J]. Journal of Food Engineering,2020,274(C):109851.
|
[8] |
CHEN H, ZOU Y, ZHOU A, et al. Insight into the effect of ice addition on the gel properties of Nemipterus virgatus surimi gel combined with water migration[J]. Foods,2021,10(8):1815. doi: 10.3390/foods10081815
|
[9] |
刘芳芳, 林婉玲, 李来好, 等. 海鲈鱼糜加工及凝胶形成过程中蛋白质的变化机理[J]. 食品科学, 2020, 41(14):15−22. [LIU Fangfang, LIN Wanling, LI Laihao, et al. Protein change mechanism during processing and gel formation of sea bass surimi[J]. Food Science, 2019, 41(14):15−22.
LIU Fangfang, LIN Wanling, LI Laihao, et al. Protein change mechanism during processing and gel formation of sea bass surimi[J]. Food Science, 2019, 41(14): 15−22.
|
[10] |
周爱梅, 黄文华, 刘欣, 等. 转谷氨酰胺酶对鳙鱼鱼糜凝胶特性的影响[J]. 食品与发酵工业,2003,29(8):27−31. [ZHOU Aimei, HUANG Wenhua, LIU Xin, et al. Effect of transglutaminase on gel properties of bighthys surimi[J]. Food and Fermentation Industry,2003,29(8):27−31.
|
[11] |
CHEN H, ZHOU A, BENJAKUL S, et al. The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi[J]. LWT-Food Science & Technology,2021,150:112086.
|
[12] |
PAN T, GUO H, LI Y, et al. The effects of calcium chloride on the gel properties of porcine myosin- κ-carrageenan mixtures[J]. Food Hydrocolloids,2017,63:467−477. doi: 10.1016/j.foodhyd.2016.09.026
|
[13] |
秦影, 汤海青, 欧昌荣, 等. 超高压处理对大黄鱼鱼糜水分状态和蛋白质结构的影响[J]. 农业工程学报,2015,31(23):246−252. [QIN Ying, TANG Haiqing, OU Changrong, et al. Effects of ultra-high pressure treatment on water status and protein structure of large yellow croaker surimi[J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(23):246−252.
|
[14] |
MAQSOOD S, BENJAKUL S, BALANGE A K. Effect of tannic acid and kiam wood extract on lipid oxidation and textural properties of fish emulsion sausages during refrigerated storage[J]. Food Chemistry,2012,130(2):408−416. doi: 10.1016/j.foodchem.2011.07.065
|
[15] |
ZHOU A, CHEN H, ZOU Y, et al. Insight into the mechanism of optimal low-level pressure coupled with heat treatment to improve the gel properties of Nemipterus virgatus surimi combined with water migration[J]. Food Research International,2022,157:111230. doi: 10.1016/j.foodres.2022.111230
|
[16] |
GÓMEZ-GUILLÉN M C, BORDERÍAS A J, MONTERO P. Chemical interactions of nonmuscle proteins in the network of sardine ( Sardina pilchardus) muscle gels[J]. LWT-Food Science and Technology,1997,30(6):602−608. doi: 10.1006/fstl.1997.0239
|
[17] |
WANG L, ZHANG M, BHANDARI B, et al. Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel[J]. Food Research International,2016,86:131−139. doi: 10.1016/j.foodres.2016.06.007
|
[18] |
TAN F J, LAI K M, HSU K C. A comparative study on physical properties and chemical interactions of gels from tilapia meat pastes induced by heat and pressure[J]. Journal of Texture Studies,2010,41(2):153−170. doi: 10.1111/j.1745-4603.2010.00219.x
|
[19] |
YANG H, TAO F, CAO G, et al. Stability improvement of reduced-fat reduced-salt meat batter through modulation of secondary and tertiary protein structures by means of high pressure processing[J]. Meat Science,2021,176:108439. doi: 10.1016/j.meatsci.2021.108439
|
[20] |
BUAMARD N, BENJAKUL S. Combination effect of high pressure treatment and ethanolic extract from coconut husk on gel properties of sardine surimi[J]. LWT,2018,91:361−367. doi: 10.1016/j.lwt.2018.01.074
|
[21] |
CANDO D, HERRANZ B, BORDERÍAS A J, et al. Effect of high pressure on reduced sodium chloride surimi gels[J]. Food Hydrocolloids,2015,51:176−187. doi: 10.1016/j.foodhyd.2015.05.016
|
[22] |
LU H, LIANG Y, ZHANG X, et al. Effects of cathepsins on gel strength and water-holding capacity of myofibrillar protein gels from bighead carp ( Aristichthys nobilis) under a hydroxyl radical-generation oxidizing system[J]. Foods,2022,11(3):330. doi: 10.3390/foods11030330
|
[23] |
RIBEIRO A T, ELIAS M, TEIXEIRA B, et al. Effects of high pressure processing on the physical properties of fish ham prepared with farmed meagre ( Argyrosomus regius) with reduced use of microbial transglutaminase[J]. Food Science & Technology,2018,96:296−306.
|
[24] |
LI Z, WANG J, ZHENG B, et al. Effects of high pressure processing on gelation properties and molecular forces of myosin containing deacetylated konjac glucomannan[J]. Food Chemistry,2019,291:117−125. doi: 10.1016/j.foodchem.2019.03.146
|
[25] |
ZHAO Z, MU T, ZHANG M, et al. Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure[J]. Food and Bioprocess Technology,2018,11(9):1719−1732. doi: 10.1007/s11947-018-2137-y
|
[26] |
VELAZQUEZ G, MÉNDEZ-MONTEALVO M G, WELTI-CHANES J, et al. Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins[J]. LWT,2021,146:111389. doi: 10.1016/j.lwt.2021.111389
|
[27] |
CANDO D, BORDERÍAS A J, MORENO H M. Combined effect of aminoacids and microbial transglutaminase on gelation of low salt surimi content under high pressure processing[J]. Innovative Food Science & Emerging Technologies,2016,36:10−17.
|
[28] |
ZHU Z, LANIER T C, FARKAS B E, et al. Transglutaminase and high pressure effects on heat-induced gelation of Alaska pollock ( Theragra chalcogramma) surimi[J]. Journal of Food Engineering,2014,131:154−160. doi: 10.1016/j.jfoodeng.2014.01.022
|
[29] |
CANDO D, MORENO H M, TOVAR C A, et al. Effect of high pressure and/or temperature over gelation of isolated hake myofibrils[J]. Food and Bioprocess Technology,2014,7(11):3197−3207. doi: 10.1007/s11947-014-1279-9
|
[30] |
CHEN Y, XU A, YANG R, et al. Myofibrillar protein structure and gel properties of trichiurus haumela surimi subjected to high pressure or high pressure synergistic heat[J]. Food and Bioprocess Technology,2020,13(4):589−598. doi: 10.1007/s11947-020-02416-x
|
[31] |
ZHANG Z, YANG Y, TANG X, et al. Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure[J]. Food Chemistry,2015,188:111−118. doi: 10.1016/j.foodchem.2015.04.129
|
[32] |
LIU H, XU Y, ZU S, et al. Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality:A review[J]. Foods,2021,10(8):1872. doi: 10.3390/foods10081872
|
[33] |
WANG J, LI Z, ZHENG B, et al. Effect of ultra-high pressure on the structure and gelling properties of low salt golden threadfin bream ( Nemipterus virgatus) myosin[J]. LWT,2019,100:381−390. doi: 10.1016/j.lwt.2018.10.053
|
[34] |
LIU R, ZHAO S, LIU Y, et al. Effect of pH on the gel properties and secondary structure of fish myosin[J]. Food Chemistry,2010,121(1):196−202. doi: 10.1016/j.foodchem.2009.12.030
|
[35] |
BOURAOUI M, NAKAI S, LI-CHAN E. In situ investigation of protein structure in Pacific whiting surimi and gels using Raman spectroscopy[J]. Food Research International,1997,30(1):65−72. doi: 10.1016/S0963-9969(97)00020-3
|
[36] |
ZHANG Z, YANG Y, ZHOU P, et al. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein[J]. Food Chemistry,2017,217:678−686. doi: 10.1016/j.foodchem.2016.09.040
|
[37] |
XUE S, YANG H, LIU R, et al. Applications of high pressure to pre-rigor rabbit muscles affect the functional properties associated with heat-induced gelation[J]. Meat Science,2017,129:176−184. doi: 10.1016/j.meatsci.2017.03.006
|