GAO Hongdou, SHI Junyan, LIU Haitao, et al. Effect of Ozone Micro-Nano-Bubbles Treatment on “Green” and the Mechanism in Soybean Sprout[J]. Science and Technology of Food Industry, 2024, 45(1): 295−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020059.
Citation: GAO Hongdou, SHI Junyan, LIU Haitao, et al. Effect of Ozone Micro-Nano-Bubbles Treatment on “Green” and the Mechanism in Soybean Sprout[J]. Science and Technology of Food Industry, 2024, 45(1): 295−302. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020059.

Effect of Ozone Micro-Nano-Bubbles Treatment on “Green” and the Mechanism in Soybean Sprout

  • In order to explore the effect of ozone micro-nano-bubbles (Ozone MNBs) on “green” and the regulative mechanism in soybean sprout, this study took soybean sprout as the experimental material, treated with 4 mg/L Ozone MNBs and stored in white LED condition. Physical quality, synthesizing and decomposing of chlorophyll (enzyme activity and substance) were measured in soybean sprout. Compared with control group, 4 mg/L Ozone MNBs treatment could significantly inhibit the “green”, enhance the activities of chlorophyllase (Chlase), chlorophyll degrading peroxidase (Chl-POX), Mg-dechelatase (MD) and pheophytinase (PPH). And it decreased the levels of precursors in chlorophyll synthesis δ-aminolevulinic acid (ALA) and Urogen Ⅲ, chlorophyll, chlorophyll a and chlorophyll b. Additionally, it declined the content of ADP, ATP, NADP+ and NADPH in soybean sprout. Thus, 4 mg/L Ozone MNBs treatment affected the substance and enzyme activity of synthesizing and decomposing of chlorophyll, effectively hindered “green” in soybean sprout under white LED.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return