Citation: | SHI Yuan, LI Jing, HU Jiamiao, et al. Bibliometric Analysis of the Research Progressing in Photodynamic Antimicrobial Technology Based on Citespace[J]. Science and Technology of Food Industry, 2024, 45(10): 335−352. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010162. |
[1] |
SONGCA S P, ADJEI Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms[J]. International Journal of Molecular Sciences,2022,23(6):3209. doi: 10.3390/ijms23063209
|
[2] |
DIAS L D, BLANCO K C, MFOUO-TYNGA I S, et al. Curcumin as a photosensitizer:From molecular structure to recent advances in antimicrobial photodynamic therapy[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews,2020,45:100384. doi: 10.1016/j.jphotochemrev.2020.100384
|
[3] |
张帅, 刘若雨, 李晨, 等. 姜黄素介导的光动力冷杀菌技术在食品中的研究进展[J]. 食品与发酵工业,2022,48(12):1−7. [ZHANG S, LIU R Y, LI C, et al. Research progress of curcumin-mediated photodynamic cold pasteurization technology in food[J]. Food and Fermentation Industries,2022,48(12):1−7.]
ZHANG S, LIU R Y, LI C, et al. Research progress of curcumin-mediated photodynamic cold pasteurization technology in food[J]. Food and Fermentation Industries, 2022, 48(12): 1−7.
|
[4] |
张昌, 任恩, 庞鑫, 等. 光动力抗菌纳米制剂研究进展[J]. 中国激光,2020,47(2):163−170. [ZHANG C, REN E, PANG X, et al. Recent advances in nanophotosensitizers for antibacterial photodynamic therapy[J]. Chinese Journal of Lasers,2020,47(2):163−170.]
ZHANG C, REN E, PANG X, et al. Recent advances in nanophotosensitizers for antibacterial photodynamic therapy[J]. Chinese Journal of Lasers, 2020, 47(2): 163−170.
|
[5] |
HUANG L Y, XUAN Y, KOIDE Y, et al. Type I and type II mechanisms of antimicrobial photodynamic therapy:An in vitro study on gram-negative and gram-positive bacteria[J]. Lasers in Surgery and Medicine,2012,44(6):490−499. doi: 10.1002/lsm.22045
|
[6] |
HASENLEITNER M, PLAETZER K. In the Right light:Photodynamic inactivation of microorganisms using a LEd-based illumination device tailored for the antimicrobial application[J]. Antibiotics,2020,9(1):13.
|
[7] |
ALVES E, FAUSTINO M, NEVES M, et al. Potential applications of porphyrins in photodynamic inactivation beyond the medical scope[J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2015,22:34−57. doi: 10.1016/j.jphotochemrev.2014.09.003
|
[8] |
HU X J, ZHANG H, WANG Y T, et al. Synergistic antibacterial strategy based on photodynamic therapy:Progress and perspectives[J]. Chemical Engineering Journal,2022,450:138129. doi: 10.1016/j.cej.2022.138129
|
[9] |
郑宝东, 林少玲, 曾绍校, 等. 光动力技术研究进展及其在食品工业中的应用前景[J]. 食品与生物技术学报,2020,39(5):6−15. [ZHENG B D, LIN S L, ZENG S X, et al. Photodynamic technology and its application in food industry[J]. Journal of Food Science and Biotechnology,2020,39(5):6−15.] doi: 10.3969/j.issn.1673-1689.2020.05.002
ZHENG B D, LIN S L, ZENG S X, et al. Photodynamic technology and its application in food industry[J]. Journal of Food Science and Biotechnology, 2020, 39(5): 6−15. doi: 10.3969/j.issn.1673-1689.2020.05.002
|
[10] |
GAO Y, WANG J, HU D, et al. Bacteria-targeted supramolecular photosensitizer delivery vehicles for photodynamic ablation against biofilms[J]. Macromolecular Rapid Communications,2019,40(4):1800763. doi: 10.1002/marc.201800763
|
[11] |
CANTELLI A, PIRO F, PECCHINI P, et al. Concanavalin a-rose bengal bioconjugate for targeted gram-negative antimicrobial photodynamic therapy[J]. Journal of Photochemistry and Photobiology B: Biology,2020,206:111852. doi: 10.1016/j.jphotobiol.2020.111852
|
[12] |
杨彬倩. 纳米球对球菌的选择性吸附赋予了光动力疗法窄谱的抗菌活性[D]. 合肥:中国科学技术大学, 2020. [YANG B Q. The selective adsorption of micrococcus by nanospheres endows photodynamic therapy with narrow spectrum antibacterial activity[D]. Hefei:University of Science and Technology of China, 2020.]
YANG B Q. The selective adsorption of micrococcus by nanospheres endows photodynamic therapy with narrow spectrum antibacterial activity[D]. Hefei: University of Science and Technology of China, 2020.
|
[13] |
SIMONE N C B, FRIEDBERG J S, GLATSTEIN E, et al. Photodynamic therapy for the treatment of non-small cell lung cancer[J]. Journal of Thoracic Disease,2012,4(1):63−75.
|
[14] |
MOY L S, FROST D, MOY S. Photodynamic therapy for photodamage, actinic keratosis, and acne in the cosmetic practice[J]. Facial Plastic Surgery Clinics of North America,2020,28(1):135−148. doi: 10.1016/j.fsc.2019.09.012
|
[15] |
ARENTZ J, VON DER HEIDE H J. Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection[J]. Photodiagnosis and Photodynamic Therapy,2022,37:102642. doi: 10.1016/j.pdpdt.2021.102642
|
[16] |
ZHU D, WANG B, ZHU X, et al. A MnO2-coated multivariate porphyrinic metal-organic framework for oxygen self-sufficient chemo-photodynamic synergistic therapy[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2021, 37:102440.
|
[17] |
林少玲, 黄晨楹, 朱子瑶, 等. 非热力光动力灭菌技术在食品安全中的研究进展[J]. 中国食品学报,2018,18(7):323−331. [LIN S L, HUANG C Y, ZHU Z Y, et al. Research progress of non-thermal photodynamic therapy on food safety[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(7):323−331.]
LIN S L, HUANG C Y, ZHU Z Y, et al. Research progress of non-thermal photodynamic therapy on food safety[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(7): 323−331.
|
[18] |
CHEN C M. CiteSpace II:Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of The American Society for Information Science and Technology,2006,57(3):359−377. doi: 10.1002/asi.20317
|
[19] |
LIU Z, YIN Y, LIU W, et al. Visualizing the intellectual structure and evolution of innovation systems research:A bibliometric analysis[J]. Scientometrics,2015,103(1):135−158. doi: 10.1007/s11192-014-1517-y
|
[20] |
SINGH V K, SINGH P, KARMAKAR M, et al. The journal coverage of Web of Science, Scopus and Dimensions:A comparative analysis[J]. Scientometrics,2021,126(6):5113−5142. doi: 10.1007/s11192-021-03948-5
|
[21] |
肖鹏飞. 全球黄曲霉毒素研究的文献计量学分析[J]. 食品科学,2022,43(15):378−388. [XIAO P F. Global progress of aflatoxin research based on bibliometric analysis[J]. Food Science,2022,43(15):378−388.] doi: 10.7506/spkx1002-6630-20210606-076
XIAO P F. Global progress of aflatoxin research based on bibliometric analysis[J]. Food Science, 2022, 43(15): 378−388. doi: 10.7506/spkx1002-6630-20210606-076
|
[22] |
KOU W, WANG X, LI Y, et al. Research trends of posttraumatic growth from 1996 to 2020:A bibliometric analysis based on Web of Science and CiteSpace[J]. Journal of Affective Disorders Reports,2021(3):100052.
|
[23] |
REN M, YU X, MUJUMDAR A S, et al. Visualizing the knowledge domain of pulsed light technology in the food field:A scientometrics review[J]. Innovative Food Science & Emerging Technologies,2021,74:102823.
|
[24] |
叶垚敏, 雷后兴, 张晓芹, 等. 基于CiteSpace的中药中黄曲霉素国内研究现状可视化分析[J]. 中国医药导报,2021,18(33):123−126. [YE Y M, LEI H X, ZHANG X Q, et al. Visual analysis of domestic research status of aflatoxin in traditional chinese medicine based on CiteSpace[J]. China Traditional Chinese Medicine Guide,2021,18(33):123−126.] doi: 10.3969/j.issn.1673-7210.2021.33.yycyzx202133029
YE Y M, LEI H X, ZHANG X Q, et al. Visual analysis of domestic research status of aflatoxin in traditional chinese medicine based on CiteSpace[J]. China Traditional Chinese Medicine Guide, 2021, 18(33): 123−126. doi: 10.3969/j.issn.1673-7210.2021.33.yycyzx202133029
|
[25] |
林子婕, 王延飞. H指数在高校图书馆微博运营评价中的应用[J]. 图书馆理论与实践,2021(1):131−136. [LIN Z J, WANG Y F. Application of H index in the evaluation of micro-blog operation of university libraries[J]. Library Theory and Practice,2021(1):131−136.]
LIN Z J, WANG Y F. Application of H index in the evaluation of micro-blog operation of university libraries[J]. Library Theory and Practice, 2021(1): 131−136.
|
[26] |
闫鉴, 魏丽萍, 郜毓堃, 等. 基于文献计量学对黑果腺肋花楸的可视化分析[J]. 食品与发酵工业,2022,48(14):1−11. [YAN J, WEI L P, GAO Y K, et al. Visual analysis of Aronia melanocarpa based on bibliometrics[J]. Food and Fermentation Industries,2022,48(14):1−11.]
YAN J, WEI L P, GAO Y K, et al. Visual analysis of Aronia melanocarpa based on bibliometrics[J]. Food and Fermentation Industries, 2022, 48(14): 1−11.
|
[27] |
唐卫红. “一带一路”倡议下我国食品行业发展对策研究[J]. 产业创新研究,2018(3):5−9. [TANG W H. Research on countermeasures for the development of China's food industry under "the Belt and Road" initiative[J]. Industrial Innovation,2018(3):5−9.]
TANG W H. Research on countermeasures for the development of China's food industry under "the Belt and Road" initiative[J]. Industrial Innovation, 2018(3): 5−9.
|
[28] |
王艳斌, 陈薇, 欧阳昭连, 等. 2000~2011年肿瘤光动力疗法研究文献计量分析[J]. 北京生物医学工程,2013,322(5):508−514. [WANG Y B, CHEN W, OUYANG Z L, et al. A bibliometrics study of literature on tumor photodynamic therapy research from 200 to 2011[J]. Beijing Biomedical Engineering,2013,322(5):508−514.] doi: 10.3969/j.issn.1002-3208.2013.05.12
WANG Y B, CHEN W, OUYANG Z L, et al. A bibliometrics study of literature on tumor photodynamic therapy research from 200 to 2011[J]. Beijing Biomedical Engineering, 2013, 322(5): 508−514. doi: 10.3969/j.issn.1002-3208.2013.05.12
|
[29] |
马海乐, 陈文庆. 基于电磁波和等离子体的固态食品新兴物理杀菌技术研究现状与展望[J]. 食品科学技术学报,2023,41(4):1−15. [MA H L, CHEN W Q. Research status and prosect of emerging physical sterilization technology of solid food based on electromagnetic wave and plasma[J]. Journal of Fodd Science and Technology,2023,41(4):1−15.] doi: 10.12301/spxb202300403
MA H L, CHEN W Q. Research status and prosect of emerging physical sterilization technology of solid food based on electromagnetic wave and plasma[J]. Journal of Fodd Science and Technology, 2023, 41(4): 1−15. doi: 10.12301/spxb202300403
|
[30] |
孙宁宁, 陈文勇, 马丽华. CNKI作为评价科研产出能力与影响力的应用研究[J]. 河南图书馆学刊,2016,36(1):112−114. [SUN N N, CHEN W Y, MA L H. CNKI as An applied research to evaluate the capacity and influence of scientific research output[J]. Journal of Henan Library,2016,36(1):112−114.] doi: 10.3969/j.issn.1003-1588.2016.01.041
SUN N N, CHEN W Y, MA L H. CNKI as An applied research to evaluate the capacity and influence of scientific research output[J]. Journal of Henan Library, 2016, 36(1): 112−114. doi: 10.3969/j.issn.1003-1588.2016.01.041
|
[31] |
SARDI J, SCORZONI L, BERNARDI T, et al. Candida species:Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options[J]. Journal of Medical Microbiology,2013,62:10−24. doi: 10.1099/jmm.0.045054-0
|
[32] |
MAO C Y, XIANG Y M, LIU X M, et al. Photo-inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures[J]. Acs Nano,2017,11(9):9010−9021. doi: 10.1021/acsnano.7b03513
|
[33] |
DAI T H, FUCHS B B, COLEMAN J J, et al. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform[J]. Frontiers in Microbiology,2012,3:120.
|
[34] |
DE OLIVEIRA E F, TOSATI J V, TIKEKAR R V, et al. Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua:Applications for fresh produce sanitation[J]. Postharvest Biology and Technology,2018,137:86−94. doi: 10.1016/j.postharvbio.2017.11.014
|
[35] |
HAMBLIN M R. Antimicrobial photodynamic inactivation:A bright new technique to kill resistant microbes[J]. Current Opinion in Microbiology,2016,33:67−73. doi: 10.1016/j.mib.2016.06.008
|
[36] |
WAINWRIGHT M, MAISCH T, NONELL S, et al. Photoantimicrobials-are we afraid of the light?[J]. Lancet Infectious Diseases,2017,17(2):E49−E55. doi: 10.1016/S1473-3099(16)30268-7
|
[37] |
HEINEMANN F, KARGES J, GASSER G. Critical overview of the use of Ru(II) Polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy[J]. Accounts of Chemical Research,2017,50(11):2727−2736. doi: 10.1021/acs.accounts.7b00180
|
[38] |
DEMIDOVA T N, HAMBLIN M R. Effect of cell-photo sensitizer binding and cell density on microbial photoinactivation[J]. Antimicrobial Agents and Chemotherapy,2005,49(6):2329−2335. doi: 10.1128/AAC.49.6.2329-2335.2005
|
[39] |
DONNELLY R F, MCCARRON P A, TUNNEY M M. Antifungal photodynamic therapy[J]. Microbiological Research,2008,163(1):1−12. doi: 10.1016/j.micres.2007.08.001
|
[40] |
SMITH A W. Biofilms and antibiotic therapy:Is there a role for combating bacterial resistance by the use of novel drug delivery systems?[J]. Advanced Drug Delivery Reviews,2005,57(10):1539−1550. doi: 10.1016/j.addr.2005.04.007
|
[41] |
TAVARES A, CARVALHO C, FAUSTINO M A, et al. Antimicrobial photodynamic therapy:Study of bacterial recovery viability and potential development of resistance after treatment[J]. Marine Drugs,2010,8(1):91−105. doi: 10.3390/md8010091
|
[42] |
ZHOU J, LI M H, HOU Y H, et al. Engineering of a Nanosized biocatalyst for combined tumor starvation and low-temperature photothermal therapy[J]. Acs Nano,2018,12(3):2858−2872. doi: 10.1021/acsnano.8b00309
|
[43] |
MAO C Y, XIANG Y M, LIU X M, et al. Repeatable photodynamic therapy with triggered signaling pathways of fibroblast cell proliferation and differentiation to promote bacteria-accompanied wound healing[J]. Acs Nano,2018,12(2):1747−1759. doi: 10.1021/acsnano.7b08500
|
[44] |
MAISCH T, SZEIMIES R M, JORI G, et al. Antibacterial photodynamic therapy in dermatology[J]. Photochemical & Photobiological Sciences,2004,3(10):907−917.
|
[45] |
KOMERIK N, NAKANISHI H, MACROBERT A J, et al. In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model[J]. Antimicrobial Agents and Chemotherapy,2003,47(3):932−940. doi: 10.1128/AAC.47.3.932-940.2003
|
[46] |
LI Y, LIU X M, TAN L, et al. Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-c3n4 under dual light irradiation[J]. Advanced Functional Materials,2018,28(30):1800299. doi: 10.1002/adfm.201800299
|
[47] |
SHARMA S K, CHIANG L Y, HAMBLIN M R. Photodynamic therapy with fullerenes in vivo:Reality or a dream?[J]. Nanomedicine,2011,6(10):1813−1825. doi: 10.2217/nnm.11.144
|
[48] |
DEMIDOVA T N, HAMBLIN M R. Photodynamic therapy targeted to pathogens[J]. International Journal of Immunopathology and Pharmacology,2004,17(3):245−254. doi: 10.1177/039463200401700304
|
[49] |
AL-JUMAILI A, ALANCHERRY S, BAZAKA K, et al. Review on the antimicrobial properties of carbon nanostructures[J]. Materials,2017,10(9):1066. doi: 10.3390/ma10091066
|
[50] |
JORI G, BROWN S B. Photosensitized inactivation of microorganisms[J]. Photochemical & Photobiological Sciences,2004,3(5):403−405.
|
[51] |
ZIENTAL D, CZARCZYNSKA-GOSLINSKA B, MLYNARCZYK D T, et al. Titanium dioxide nanoparticles:Prospects and applications in medicine[J]. Nanomaterials,2020,10(2):387. doi: 10.3390/nano10020387
|
[52] |
肖鹏飞, 安璐, 吴德东. 基于文献计量学分析的全球生物质炭研究进展[J]. 农业工程学报,2020,36(18):292−300. [XIAO P F, AN L, WU D D. Research progress of biochar in the world based on bibliometrics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(18):292−300.] doi: 10.11975/j.issn.1002-6819.2020.18.034
XIAO P F, AN L, WU D D. Research progress of biochar in the world based on bibliometrics analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(18): 292−300. doi: 10.11975/j.issn.1002-6819.2020.18.034
|
[53] |
PANDIAN S, ANISH B, ANBAZHAGAN K, et al. Effect of substituents on the photodynamic action of anthraquinones:Epr, computational and in vitro studies[J]. Photochemistry and photobiology,2022,98(3).
|
[54] |
AMIRHOSSEIN M, RAZIEH J, RASHIN B, et al. Evaluation of the photodynamic therapy with riboflavin and curcumin on shear bond strength of orthodontic bracket:An in vitro study[J]. Photodiagnosis and Photodynamic Therapy,2022,38:102787. doi: 10.1016/j.pdpdt.2022.102787
|
[55] |
SULAIMAN A R. Caries affected dentin disinfection using Ozone; methylthioninium chloride and turmeric activated by photodynamic therapy on bond integrity of resin-modified glass ionomer cement[J]. Photodiagnosis and Photodynamic Therapy, 2021, 36:102613.
|
[56] |
PENHA C B, BONIN E, DA SILVA A F, et al. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin[J]. LWT-Food Science and Technology,2017,76:198−202. doi: 10.1016/j.lwt.2016.07.037
|
[57] |
杨京航, 康世奇, 苏晓慧, 等. 基于CiteSpace对山豆根研究进展的可视化分析[J]. 中国中药杂志,2021,46(7):1763−1768. [YANG J H, KANG S Q, SU X H, et al. Visual analysis of research progress of Sophorae Tonkinensis Radix et Rhizoma based on Citespace[J]. China Journal of Chinese Material Medical,2021,46(7):1763−1768.]
YANG J H, KANG S Q, SU X H, et al. Visual analysis of research progress of Sophorae Tonkinensis Radix et Rhizoma based on Citespace[J]. China Journal of Chinese Material Medical, 2021, 46(7): 1763−1768.
|
[58] |
孙人杰, 何琴, 吴德智. 基于 CiteSpace 知识图谱及专利计量对铁皮石斛相关研究的可视化分析[J]. 食品工业科技,2023,44(20):322−330. [SUN R J, HE Q, WU D Z. Visual analysis of Dendrobium candidum related research based on CiteSpace knowledge map and patent bibliometrics[J]. Science and Technology of Food Industry,2023,44(20):322−330.]
SUN R J, HE Q, WU D Z. Visual analysis of Dendrobium candidum related research based on CiteSpace knowledge map and patent bibliometrics[J]. Science and Technology of Food Industry, 2023, 44(20): 322−330.
|
[59] |
栾小敏, 路海艳, 武笑影, 等. 血卟啉单甲醚介导的光动力抗微生物化疗法对牙龈卟啉单胞菌体外杀菌效果的研究[J]. 激光生物学报,2021,30(6):548−552. [LUAN X M, LU H Y, WU X Y, et al. Photodynamic antimicrobial chemotherapeutic effects of hemoporphyromonyl ether on Porphyromonas gingivalis in vitro[J]. Acta Laser Biology Sinica,2021,30(6):548−552.] doi: 10.3969/j.issn.1007-7146.2021.06.009
LUAN X M, LU H Y, WU X Y, et al. Photodynamic antimicrobial chemotherapeutic effects of hemoporphyromonyl ether on Porphyromonas gingivalis in vitro[J]. Acta Laser Biology Sinica, 2021, 30(6): 548−552. doi: 10.3969/j.issn.1007-7146.2021.06.009
|
[60] |
朱嘉梦. 光动力联合米诺环素治疗重度痤疮的临床分析[D]. 大理:大理大学, 2022. [ZHU J M. Clinical analysis of photodynamic combined with minocycline in the treatment of severe acne[D]. Dali:Dali University, 2022.]
ZHU J M. Clinical analysis of photodynamic combined with minocycline in the treatment of severe acne[D]. Dali: Dali University, 2022.
|
[61] |
杨国峰, 陈蔚婷. 释氧光动力疗法对根管内粪肠球菌清除效果的体外研究[J]. 口腔疾病防治,2022,30(9):638−643. [YANG G F, CHEN W T. An in vitro study on the clearance effect of oxygen-releasing photodynamic therapy on Enterococcus faecalis in the root canal[J]. Journal of Prevention and Treatment for Stomatological Diseases,2022,30(9):638−643.]
YANG G F, CHEN W T. An in vitro study on the clearance effect of oxygen-releasing photodynamic therapy on Enterococcus faecalis in the root canal[J]. Journal of Prevention and Treatment for Stomatological Diseases, 2022, 30(9): 638−643.
|
[62] |
林以琳, 李世洋, 赖丹宁, 等. 姜黄素介导光动力减菌技术对缢蛏的保鲜效果[J]. 农业工程学报,2020,36(16):320−326. [LIN Y L, LI S Y, LAI D N, et al. Effects of curcumin-mediated of anti-microbial photodynamic technology on preservation of razor clam[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(16):320−326.] doi: 10.11975/j.issn.1002-6819.2020.16.038
LIN Y L, LI S Y, LAI D N, et al. Effects of curcumin-mediated of anti-microbial photodynamic technology on preservation of razor clam[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 320−326. doi: 10.11975/j.issn.1002-6819.2020.16.038
|
[63] |
于金珅, 张芳. 姜黄素介导的光动力技术对鲜切马铃薯的杀菌效果[J]. 食品工业科技,2021,42(4):259−263. [YU J S, ZHANG F. Effects of curcumin-mediated photodynamic technology on bactericidal efficacy of fresh-cut potatoes[J]. Science and Technology of Food Industry,2021,42(4):259−263.]
YU J S, ZHANG F. Effects of curcumin-mediated photodynamic technology on bactericidal efficacy of fresh-cut potatoes[J]. Science and Technology of Food Industry, 2021, 42(4): 259−263.
|
[64] |
LIN Y, LAI D, WANG D, et al. Application of curcumin-mediated antibacterial photodynamic technology for preservation of fresh Tremella fuciformis[J]. LWT,2021,147:111657. doi: 10.1016/j.lwt.2021.111657
|
[65] |
曾巧辉, 余杏同, 区灿盛, 等. 姜黄素光动力杀灭即食鸡肉中沙门氏菌的研究[J]. 佛山科学技术学院学报(自然科学版),2022,40(1):19−25. [ZENG Q H, YU X T, QU C S, et al. Study on curcumin-mediated photodynamic inactivation of Salmonella on ready-to-eat chicken[J]. Journal of Foshan University(Natural Sciences Edition),2022,40(1):19−25.] doi: 10.3969/j.issn.1008-0171.2022.1.fskxjsxyxb202201003
ZENG Q H, YU X T, QU C S, et al. Study on curcumin-mediated photodynamic inactivation of Salmonella on ready-to-eat chicken[J]. Journal of Foshan University(Natural Sciences Edition), 2022, 40(1): 19−25. doi: 10.3969/j.issn.1008-0171.2022.1.fskxjsxyxb202201003
|
[66] |
HU J M, ZHOU F, LIN Y, et al. The effects of photodynamically activated curcumin on the preservation of low alum treated ready-to-eat jellyfish[J]. LWT-Food Science and Technology,2019,115:108443. doi: 10.1016/j.lwt.2019.108443
|
[67] |
CORRÊA T Q, BLANCO K C, GARCIA É B, et al. Effects of ultraviolet light and curcumin-mediated photodynamic inactivation on microbiological food safety:A study in meat and fruit[J]. Photodiagnosis and Photodynamic Therapy,2020,30:101678. doi: 10.1016/j.pdpdt.2020.101678
|
[68] |
檀茜倩, 麻冰玉, 王丹, 等. 光动力技术及其在生鲜食品保鲜中的应用研究进展[J]. 食品与生物技术学报,2022,41(7):100−110. [TAN X Q, MA B Y, WANG D, et al. Research progress of photodynamic technology and its application in fresh food preservation[J]. Journal of Food and Biotechnology,2022,41(7):100−110.] doi: 10.3969/j.issn.1673-1689.2022.07.009
TAN X Q, MA B Y, WANG D, et al. Research progress of photodynamic technology and its application in fresh food preservation[J]. Journal of Food and Biotechnology, 2022, 41(7): 100−110. doi: 10.3969/j.issn.1673-1689.2022.07.009
|
[69] |
范宇航, 周雅菲, 刘昊天, 等. 光动力灭活在食品杀菌保鲜中的研究进展[J]. 食品科学,2023,44(17):373−381. [FAN Y H, ZHOU Y F, LIU H T, et al. Research progress of photodynamic inactivation in food sterilization and preservation[J]. Food Science,2023,44(17):373−381.]
FAN Y H, ZHOU Y F, LIU H T, et al. Research progress of photodynamic inactivation in food sterilization and preservation[J]. Food Science, 2023, 44(17): 373−381.
|
[70] |
GHAZI M, POURHAJIBAGHER M, BAHADOR A, et al. Evaluation of adding nanosized natural zeolite to photodynamic therapy against P. gingivalis biofilm on titanium disks[J]. Photodiagnosis and Photodynamic Therapy,2021,36:102519. doi: 10.1016/j.pdpdt.2021.102519
|
[71] |
LI F, LIU Q, LIANG Z, et al. Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications[J]. Organic & Biomolecular Chemistry,2016,14(13):3409−3422.
|
[72] |
LAI D N, ZHOU A R, TAN B K, et al. Preparation and photodynamic bactericidal effects of curcumin-ll-cyclodextrin complex[J]. Food Chemistry,2021,361:130117. doi: 10.1016/j.foodchem.2021.130117
|
[73] |
HU J M, LIN S L, TAN B K, et al. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA[J]. Food Research International,2018,111:265−271. doi: 10.1016/j.foodres.2018.05.042
|
[74] |
GAO Y, WE J, LI Z, et al. Curcumin-mediated photodynamic inactivation (PDI) against DH5 alpha contaminated in oysters and cellular toxicological evaluation of PDI-treated oysters[J]. Photodiagnosis and Photodynamic Therapy,2019,26:244−251. doi: 10.1016/j.pdpdt.2019.04.002
|
[75] |
孟媛媛, 刘海泉, 潘迎捷, 等. 光动力杀菌机制及在食品应用中的优势与不足[J]. 食品工业科技,2022,43(22):414−421. [MENG Y Y, LIU H Q, PAN Y J, et al. Photodynamic sterilization mechanism and its advantages and disadvantages in food applications[J]. Food Industry Science and Technology,2022,43(22):414−421.]
MENG Y Y, LIU H Q, PAN Y J, et al. Photodynamic sterilization mechanism and its advantages and disadvantages in food applications[J]. Food Industry Science and Technology, 2022, 43(22): 414−421.
|
[76] |
潘慧, 王冬青. LED蓝光联合玫瑰红对具核梭杆菌的体外光动力灭菌研究[J]. 中国激光医学杂志,2018,27(4):259−264. [PAN H, WANG D Q. Study on in vitro photodynamic sterilization of Fusobacterium nucleatum by LED blue light combined with rose red[J]. Chinese Journal of Laser Medicine,2018,27(4):259−264.]
PAN H, WANG D Q. Study on in vitro photodynamic sterilization of Fusobacterium nucleatum by LED blue light combined with rose red[J]. Chinese Journal of Laser Medicine, 2018, 27(4): 259−264.
|
[77] |
仲丽晴, 刘芹, 刘宝瑞. 肿瘤光动力免疫治疗的研究进展[J]. 中华肿瘤防治杂志,2023,30(6):341−346. [ZHONG L Q, LIU Q, LIU B R. Research progress of photodynamic immunotherapy for tumor[J]. Chinese Journal of Cancer Prevention,2023,30(6):341−346.]
ZHONG L Q, LIU Q, LIU B R. Research progress of photodynamic immunotherapy for tumor[J]. Chinese Journal of Cancer Prevention, 2023, 30(6): 341−346.
|
[78] |
武家声, 胡韶山. 氧载体纳米药物递送系统增强光动力疗效的研究进展[J]. 中国激光医学杂志,2022,31(1):42−50. [WU J S, HU S S. Progress made in enhancing curative effect of photodynamic therapy oxygen carrier nanodrug delivery system[J]. Chinese Journal of Laser Medicine,2022,31(1):42−50.]
WU J S, HU S S. Progress made in enhancing curative effect of photodynamic therapy oxygen carrier nanodrug delivery system[J]. Chinese Journal of Laser Medicine, 2022, 31(1): 42−50.
|
[79] |
邱建清, 李世洋, 叶倩文, 等. 声动力技术在食品杀菌领域的研究进展[J]. 食品科学,2020,41(19):245−252. [QIU J Q, LI S Y, YE Q W, et al. Recent progress in sonodynamic technology in the field of food sterilization[J]. Food Science,2020,41(19):245−252.]
QIU J Q, LI S Y, YE Q W, et al. Recent progress in sonodynamic technology in the field of food sterilization[J]. Food Science, 2020, 41(19): 245−252.
|
[80] |
WANG D, ZHOU F, LAI D, et al. Curcumin-mediated sono/photodynamic treatment preserved the quality of shrimp surimi and influenced its microbial community changes during refrigerated storage[J]. Ultrasonics Sonochemistry,2021,78:105715. doi: 10.1016/j.ultsonch.2021.105715
|
[81] |
CAO W, YUE L, ZHANG Y, et al. Photodynamic chitosan functionalized MoS2 nanocomposite with enhanced and broad-spectrum antibacterial activity[J]. Carbohydrate Polymers,2022,277:118808. doi: 10.1016/j.carbpol.2021.118808
|
[82] |
CHEN J, FAN T, XIE Z, et al. Advances in nanomaterials for photodynamic therapy applications:Status and challenges[J]. Biomaterials,2020,237:119827. doi: 10.1016/j.biomaterials.2020.119827
|
[83] |
林少玲, 施源, 张佳雯, 等. 高压静电激活光动力延长海鲜菇货架期的保鲜方法:中国, 202210035187.3[P]. 2022-04-08. [LIN S L, SHI Y, ZHANG J W, et al. A method for prolonging the shelf life of sea mushrooms with photodynamic activation of high voltage static electricity:China, 202210035187.3 [P]. 2022-04-08.]
LIN S L, SHI Y, ZHANG J W, et al. A method for prolonging the shelf life of sea mushrooms with photodynamic activation of high voltage static electricity: China, 202210035187.3 [P]. 2022-04-08.
|
[84] |
BARRA F, ROSCETTO E, SORIANO A, et al. Photodynamic and antibiotic therapy in combination to fight biofilms and resistant surface bacterial infections[J]. International Journal of Molecular Sciences,2015,16(9):20417−20430. doi: 10.3390/ijms160920417
|
[85] |
杨贵兰, 秦松, 李文军. 光敏剂的纳米修饰技术及新型纳米材料在肿瘤光动力疗法中的应用研究进展[J]. 山东医药,2020,60(35):84−87. [YANG G L, QIN S, LI W J. Research progress on nano modification technology of photosensitizers and application of new nanomaterials in photodynamic therapy of tumor[J]. Shandong Medicine,2020,60(35):84−87.]
YANG G L, QIN S, LI W J. Research progress on nano modification technology of photosensitizers and application of new nanomaterials in photodynamic therapy of tumor[J]. Shandong Medicine, 2020, 60(35): 84−87.
|
[86] |
胡嘉淼, 王德华, 张怡, 等. 一种具有光敏灭菌活性及新鲜度指示特性的虾滑包装材料:中国, 202110810190.3[P]. 2021-10-22. [HU J M, WANG D H, ZHANG Y, et al. The invention relates to a shrimp slip packaging material with photosensitive sterilization activity and freshness indication characteristics:China, 202110810190.3[P]. 2021-10-22.]
HU J M, WANG D H, ZHANG Y, et al. The invention relates to a shrimp slip packaging material with photosensitive sterilization activity and freshness indication characteristics: China, 202110810190.3[P]. 2021-10-22.
|