HAN Yaohui, TIAN Haohao, SHI Linfan, et al. Effects of Organic Acids on the Extraction and Properties ofAcid-soluble Collagen from Tilapia Skin[J]. Science and Technology of Food Industry, 2023, 44(22): 169−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010156.
Citation: HAN Yaohui, TIAN Haohao, SHI Linfan, et al. Effects of Organic Acids on the Extraction and Properties ofAcid-soluble Collagen from Tilapia Skin[J]. Science and Technology of Food Industry, 2023, 44(22): 169−175. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010156.

Effects of Organic Acids on the Extraction and Properties ofAcid-soluble Collagen from Tilapia Skin

More Information
  • Received Date: January 31, 2023
  • Available Online: September 14, 2023
  • The effects of three organic acids, namely, acetic acid (AA), tartaric acid (TA), and citric acid (CA), on the structure and properties of acid-soluble collagen (ASC) from tilapia skin were compared in this study. The secondary structure of the collagen samples was analyzed by circular dichroism (CD) spectrometry and Fourier transform infrared spectroscopy (FTIR). The thermal stability of the collagen samples was determined by differential scanning calorimetry (DSC), and the fibroblast ability of ASC was analyzed. Results showed that, the extraction yields of AA-ASC, TA-ASC and CA-ASC were 15.87%, 17.69%, and 28.63%, respectively. The content of triple helical conformation of AA-ASC was similar to that of CA-ASC, which was higher than that of TA-ASC. The FTIR data showed that AA-ASC had the highest hydrogen bond content, followed by CA-ASC and TA-ASC. No significant difference was found in the thermal transition temperature (Tm) of the extracted three collagens, but the enthalpy values of AA-ASC, TA-ASC, and CA-ASC were 1.18, 0.73, and 0.35 J/g, respectively. The fibrogenesis experiment revealed that AA-ASC had the highest fibril-forming rate and absorbance, followed by CA-ASC and TA-ASC. The results of this study suggest that the number and dissociation constant of carboxylic acids may play an important role in the effect of organic acids on the extraction and properties of collagen from tilapia skin.
  • [1]
    LIU D S, WEI G M, LI T C, et al. Effects of alkaline pretreatments and acid extraction conditions on the acid-soluble collagen from grass carp ( Ctenopharyngodon idella) skin[J]. Food Chemistry,2015,172:836−843. doi: 10.1016/j.foodchem.2014.09.147
    [2]
    徐逍, 徐卉, 陶宁萍. 暗纹东方鲀鱼皮胶原蛋白的提取工艺优化及其功能特性[J]. 食品工业科技,2023,44(10):168−176

    XU X, XU H, TAO N P. Optimization of preparation process of collagen from Takifugu obscurus skin and its functional properties[J]. Science and Technology of Food Industry,2023,44(10):168−176.
    [3]
    SUBHAN F, HUSSAIN Z, TAUSEEF I, et al. A review on recent advances and applications of fish collagen[J]. Critical Reviews in Food Science and Nutrition,2021,61(6):1027−1037. doi: 10.1080/10408398.2020.1751585
    [4]
    AHMED M, VERMA A K, PATEL R. Collagen extraction and recent biological activities of collagen peptides derived from sea-food waste: A review[J]. Sustainable Chemistry and Pharmacy,2020,18:100315. doi: 10.1016/j.scp.2020.100315
    [5]
    YAN M Y, JIANG X J, WANG G C, et al. Preparation of self-assembled collagen fibrillar gel from tilapia skin and its formation in presence of acidic polysaccharides[J]. Carbohydrate Polymers,2020,233:115831. doi: 10.1016/j.carbpol.2020.115831
    [6]
    王丹, 吴反修, 宋丹丹等. 中国渔业统计年鉴[M]. 北京:中国农业出版社, 2022:21−38

    WANG D, WU F X, SONG D D, et al. China fishery statistical yearbook[M]. Beijing:China Agriculture Press, 2022:21−38.
    [7]
    BHUIMBAR M V, BHAGWAT P K, DANDGE P B. Extraction and characterization of acid soluble collagen from fish waste:Development of collagen-chitosan blend as food packaging film[J]. Journal of Environmental Chemical Engineering,2019,7(2):102983. doi: 10.1016/j.jece.2019.102983
    [8]
    CHEN J D, LI L, YI R Z, et al. Extraction and characterization of acid-soluble collagen from scales and skin of tilapia ( Oreochromis niloticus)[J]. LWT-Food Science and Technology,2016,66:453−459. doi: 10.1016/j.lwt.2015.10.070
    [9]
    CHUAYCHAN S, BENJAKUL S, KISHIMURA H. Characteristics of acid-and pepsin-soluble collagens from scale of seabass ( Lates calcarifer)[J]. LWT-Food Science and Technology,2015,63(1):71−76. doi: 10.1016/j.lwt.2015.03.002
    [10]
    曾少葵. 罗非鱼鱼皮胶原蛋白的提取及其功能特性的研究[D]. 青岛:中国海洋大学, 2007

    ZENG S K. Study on isolation and characterization of collagens from the skin of Oreochromis niloticus[D]. Qingdao:Ocean University of China, 2007.
    [11]
    SKIERKA E, SADOWSKA M. The influence of different acids and pepsin on the extractability of collagen from the skin of Baltic cod ( Gadus morhua)[J]. Food Chemistry,2007,105(3):1302−1306. doi: 10.1016/j.foodchem.2007.04.030
    [12]
    SHI L F, TIAN H H, WANG Y X, et al. Effect of pH on properties of golden pompano skin collagen-based fibril gels by self-assembly in vitro[J]. Journal of the Science of Food and Agriculture,2020,100(13):4801−4807. doi: 10.1002/jsfa.10539
    [13]
    JOHNY L C, KUDRE T G, PV S. Acid and pepsin soluble collagens from skin by-product of red-bellied pacu ( Piaractus brachypomus): Extraction and comparative characterizations towards finding substitute to bovine and porcine collagen[J]. Journal of Aquatic Food Product Technology,2021,30(3):364−376. doi: 10.1080/10498850.2021.1884374
    [14]
    MENG D W, LI W, URA K, et al. Effects of phosphate ion concentration on in-vitro fibrillogenesis of sturgeon type I collagen[J]. International Journal of Biological Macromolecules,2020,148:182−191. doi: 10.1016/j.ijbiomac.2020.01.128
    [15]
    寇慧芝, 张惠惠, 韩庆秋, 等. 氨基酸组成对胶原与整合素 α2 β1结合能力的影响[J]. 食品科学,2023,44(6):143−150

    KOU H Z, ZHANG H H, HAN Q Q, et al. Effects of amino acid composition on the binding ability of collagen to integrin α2 β1[J]. Food Science,2023,44(6):143−150.
    [16]
    冯玲玲, 冯进, 李春阳. 海蜇Ⅰ型胶原蛋白的提取及结构特性研究[J]. 食品工业科技,2021,42(7):15−21

    FENG L L, FENG J, LI C Y. Extraction and structural characteristics of type I collagen from Rhopilema esculenta[J]. Science and Technology of Food Industry,2021,42(7):15−21.
    [17]
    郑清瑶, 曹文红, 韩昱梁, 等. 几种提取方法制备的糙刺参体壁胶原蛋白的特性分析[J]. 食品与发酵工业,2023,49(15):145−152

    ZHENG Q Y, CAO W H, HAN Y L, et al. Characteristics of collagens from the body wall of Stichopus horrens prepared by several extraction methods[J]. Food and Fermentation Industries,2023,49(15):145−152.
    [18]
    LIU D S, ZHOU P, LI T C, et al. Comparison of acid-soluble collagens from the skins and scales of four carp species[J]. Food Hydrocolloids,2014,41:290−297. doi: 10.1016/j.foodhyd.2014.04.030
    [19]
    TANG L L, CHEN S L, SU W J, et al. Physicochemical properties and film-forming ability of fish skin collagen extracted from different freshwater species[J]. Process Biochemistry,2015,50(1):148−155. doi: 10.1016/j.procbio.2014.10.015
    [20]
    BI C H, LI X H, XIN Q, et al. Effect of extraction methods on the preparation of electrospun/electrosprayed microstructures of tilapia skin collagen[J]. Journal of Bioscience and Bioengineering,2019,128(2):234−240. doi: 10.1016/j.jbiosc.2019.02.004
    [21]
    NIU L H, ZHOU X, YUAN C Q, et al. Characterization of tilapia ( Oreochromis niloticus) skin gelatin extracted with alkaline and different acid pretreatments[J]. Food Hydrocolloids,2013,33(2):336−341. doi: 10.1016/j.foodhyd.2013.04.014
    [22]
    GÓMEZ-GUILOEN M C, MONTERO P. Extraction of gelatin from megrim ( Lepidorhombus boscii) skins with several organic acids[J]. Journal of Food Science,2001,66(2):213−216. doi: 10.1111/j.1365-2621.2001.tb11319.x
    [23]
    CHENG F Y, HSU F W, CHANG H S, et al. Effect of different acids on the extraction of pepsin-solubilised collagen containing melanin from silky fowl feet[J]. Food Chemistry,2009,113(2):563−567. doi: 10.1016/j.foodchem.2008.08.043
    [24]
    RAN Y Q, SU W, MA L, et al. Insight into the effect of sulfonated chitosan on the structure, rheology and fibrillogenesis of collagen[J]. International Journal of Biological Macromolecules,2021,166:1480−1490. doi: 10.1016/j.ijbiomac.2020.11.027
    [25]
    周瑞, 李若男, 周丽莎, 等. 暗纹东方鲀鱼皮胶原蛋白的提取及其特性[J]. 水产学报,2020,44(8):1349−1359

    ZHOU R, LI R N, ZHOU L S, et al. Extraction and characteristics of collagens from the skin of puffer fish ( Tetrodontiformes fasciatus)[J]. Journal of Fisheries of China,2020,44(8):1349−1359.
    [26]
    汤俊, 魏东芝, 张国钧, 等. 胶原蛋白的高效制备及与明胶的鉴别[J]. 食品科学,2010,31(7):54−60

    TANG J, WEI D Z, ZHANG G J, et al. Development of efficient preparation and identification methods for bovine collagen[J]. Food Science,2010,31(7):54−60.
    [27]
    FERRARO V, GAILLARD-MARTINIE B, SAYD T, et al. Collagen type I from bovine bone. Effect of animal age, bone anatomy and drying methodology on extraction yield, self-assembly, thermal behaviour and electrokinetic potential[J]. International Journal of Biological Macromolecules,2017,97:55−66. doi: 10.1016/j.ijbiomac.2016.12.068
    [28]
    张金伟, 曹念, 陈武勇. 微波辐照对胶原蛋白三股螺旋结构的影响[J]. 光谱学与光谱分析,2018,38(5):1353−1357

    ZHANG J W, CAO N, CHEN W Y. Influence of microwave iradiation on colagen triple helix structure[J]. Spectroscopy and Spectral Analysis,2018,38(5):1353−1357.
    [29]
    GUO M H, LIU S C, ISMAIL M, et al. Changes in the myosin secondary structure and shrimp surimi gel strength induced by dense phase carbon dioxide[J]. Food Chemistry,2017,227:219−226. doi: 10.1016/j.foodchem.2017.01.050
    [30]
    HE L, YANG J, XU C Z, et al. Effect of pre-shearing treatment on the molecular structure, fibrillogenesis behavior and gel properties of collagen[J]. New Journal of Chemistry,2020,44(17):6760−6770. doi: 10.1039/D0NJ00054J
    [31]
    NIKOO M, BENJAKUL S, BASHARI M, et al. Physicochemical properties of skin gelatin from farmed Amur sturgeon ( Acipenser schrenckii) as influenced by acid pretreatment[J]. Food Bioscience,2014,5:19−26. doi: 10.1016/j.fbio.2013.10.004
    [32]
    LIU D S, LI L, REGENSTEIN J M, et al. Extraction and characterisation of pepsin-solubilised collagen from fins, scales, skins, bones and swim bladders of bighead carp ( Hypophthalmi chthys nobilis)[J]. Food Chemistry,2012,133(4):1441−1448. doi: 10.1016/j.foodchem.2012.02.032
    [33]
    SINTHUSAMRAN S, BENJAKUL S, KISHIMURA H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass ( Lates calcarifer)[J]. Food Chemistry,2013,138(4):2435−2441. doi: 10.1016/j.foodchem.2012.11.136
    [34]
    MUYONGA J H, COLE C G B, DUODU K G. Characterisation of acid soluble collagen from skins of young and adult Nile perch ( Lates niloticus)[J]. Food Chemistry,2004,85(1):81−89. doi: 10.1016/j.foodchem.2003.06.006
    [35]
    YAN M Y, QIN S, LI J. Study on the self-assembly property of type I collagen prepared from tilapia ( Oreochromis niloticus) skin by different extraction methods[J]. International Journal of Food Science & Technology,2015,50(9):2088−2096.
    [36]
    SALVATORE L, GALLO N, AIELLO D, et al. An insight on type I collagen from horse tendon for the manufacture of implantable devices[J]. International Journal of Biological Macromolecules,2020,154:291−306. doi: 10.1016/j.ijbiomac.2020.03.082
    [37]
    邓明霞, 汪海波, 杨玲, 等. 氨基酸组成及溶剂环境对淡水鱼胶原蛋白热稳定性能的影响[J]. 现代食品科技,2015,31(12):111−120

    DENG M X, WANG H B, YANG L, et al. Effects of amino acid composition and solvent environment on the thermal stability of fish collagen[J]. Modern Food Science and Technology,2015,31(12):111−120.
    [38]
    THUANTHONG M, SIRINUPONG N, YOURAVONG W. Triple helical structure of acid-soluble collagen derived from Nile tilapia skin as affected by extraction temperature[J]. Journal of the Science of Food and Agriculture,2016,96(11):3795−3800. doi: 10.1002/jsfa.7572
  • Related Articles

    [1]ZHANG Yiping, LIU Deyang, CHI Chengdeng, HE Yongjin, WANG Hailei, JIANG Xiaobing. Progress in Key Factors and the Modulation Technology of Starch Hydrothermal Stability[J]. Science and Technology of Food Industry, 2023, 44(7): 438-447. DOI: 10.13386/j.issn1002-0306.2022050104
    [2]ZHOU Qingxin, GU Caixia, CHEN Fangtian, LI Yuhuan. Optimization of Alcohol Extraction Process of Antarctic Krill Oil and Study on Thermal Stability of Astaxanthins[J]. Science and Technology of Food Industry, 2023, 44(1): 233-241. DOI: 10.13386/j.issn1002-0306.2022040016
    [3]CUI Suping, MU Qiuxia, QU Liuqing, LI Lin, CHEN Dan, ZHENG Xiqun. Effect of Antioxidative Peptide Components of Kidney Bean Protein on Thermal Oxidation Stability of Soybean Oil[J]. Science and Technology of Food Industry, 2022, 43(1): 56-61. DOI: 10.13386/j.issn1002-0306.2021030191
    [4]TIAN Geng, GAO Wei-qiang, CHEN Xiao-bo, ZHANG Chun-xiao. Isolation,Identification and Enzyme Properties of a β-Mannanase Producing Strain with High Thermal Stability[J]. Science and Technology of Food Industry, 2020, 41(19): 127-131. DOI: 10.13386/j.issn1002-0306.2020.19.020
    [5]YANG Wei, CHEN Ru-yan, XU Xiang, ZHAO Tong, LI Gen, HAO Yi-bo, WANG Wen-juan, JIAO Meng-ting, ZHANG Hao, LI Bo. Inhibition of the Aggregation of α-Lactalbumin and(-)-Epigallocatechin Gallate in the Presence of Collagen Peptide and the Thermal Stability of the Ternary Complexes Formed[J]. Science and Technology of Food Industry, 2018, 39(14): 55-60. DOI: 10.13386/j.issn1002-0306.2018.14.011
    [6]LEI Jing-ling, ZHAO Zhong-xing, WANG Chao-yang, ZHU Chang-jie, FENG Li-jin, LU Qiang-ji. Study on thermal stability and thermal inactivation kinetics of immobilized earthworm fibrinolytic enzyme[J]. Science and Technology of Food Industry, 2015, (21): 107-110. DOI: 10.13386/j.issn1002-0306.2015.21.013
    [7]MIAO Sen, WANG Lu, WANG Xiao-biao, QI Tian, ZHAO Zhi-wei, WU Yun. Research of the influence factors of thermal stability of Fresh Mare's Milk[J]. Science and Technology of Food Industry, 2015, (15): 213-218. DOI: 10.13386/j.issn1002-0306.2015.15.036
    [8]LIU Li-li, LI Si-dong, TANG Bing, YANG Xi-hong, LI Pu-wang, YANG Zi-ming. Study on the thermal stability of chitosan/gelatin composite films for food preservation[J]. Science and Technology of Food Industry, 2014, (08): 310-312. DOI: 10.13386/j.issn1002-0306.2014.08.062
    [9]Enzymatic characteristics and thermal stability model of polyphenol oxidase from potato[J]. Science and Technology of Food Industry, 2012, (19): 92-96. DOI: 10.13386/j.issn1002-0306.2012.19.035
    [10]一品红红色素的提取及其稳定性研究[J]. Science and Technology of Food Industry, 1999, (06): 24-26. DOI: 10.13386/j.issn1002-0306.1999.06.068
  • Cited by

    Periodical cited type(9)

    1. 宋德方,李洪淼,许嘉媛,赵佳怡,刘金花. 罗汉果苷零蔗糖酸奶的研制及品质分析. 辽宁农业职业技术学院学报. 2025(02): 11-14 .
    2. 李春冬,徐同,高缘,刘国强,呼日,徐伟良,马信雅,高志海,吉日嘎拉图,郭梁. 高脂酸乳与普通酸乳品质对比分析. 乳业科学与技术. 2025(02): 9-14 .
    3. 段泊安,李倩文,王晓楠,陈树兴. 山茶花低糖酸奶工艺优化及其抗氧化活性分析. 食品安全质量检测学报. 2024(09): 271-277 .
    4. 周洋,黄亚杰,文进. 响应面法优化无乳糖酸奶的配方研究. 中国酿造. 2024(06): 189-194 .
    5. 於荣荣,孙欣燕,周頔,徐升,韩彬,汤泉,董艺凝. 基于混料设计研究代糖配比及其对炼乳品质的影响. 食品安全质量检测学报. 2024(15): 147-157 .
    6. 徐广新,杨仁琴,周炜,张海霞,华惠,印伯星,王来娣. 响应面法优化桂花酒酿酸奶制备工艺. 食品安全质量检测学报. 2024(23): 145-151 .
    7. 尹丽萍,张剑林,殷娜,黎进雪,王妍凌,达菊庆,李宁,武运. 模糊数学综合评价法结合响应面法优化红葡萄酒风味发酵乳工艺. 中国酿造. 2023(01): 168-173 .
    8. 沈雍徽,陈娜,邢宇,黄威. 不同糖醇对凝固型酸奶品质的影响. 中国乳业. 2023(12): 86-91 .
    9. 谭丽丽,程雅芳,付晶晶. 罗汉果食品开发研究进展. 食品安全导刊. 2022(10): 184-186+192 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (65) PDF downloads (14) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return