Processing math: 100%
LIU Jincheng, GONG Zhiqing, YANG Peng, et al. Analysis of Nutritional Components, Active Components and Polysaccharide Properties of Phellinus igniarius[J]. Science and Technology of Food Industry, 2023, 44(22): 241−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010117.
Citation: LIU Jincheng, GONG Zhiqing, YANG Peng, et al. Analysis of Nutritional Components, Active Components and Polysaccharide Properties of Phellinus igniarius[J]. Science and Technology of Food Industry, 2023, 44(22): 241−248. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010117.

Analysis of Nutritional Components, Active Components and Polysaccharide Properties of Phellinus igniarius

More Information
  • Received Date: January 15, 2023
  • Available Online: September 18, 2023
  • In order to explore the differences of nutrition, active components and antioxidant activity in the fruiting bodies of different Phellinus igniarius, this study compared the nutritional and active ingredient contents of five species of Phellinus igniarius as well as their antioxidant activity of polysaccharides for the sake of obtaining high quality Phellinus igniarius fruiting bodies. The target Phellinus igniarius was identified by rDNA ITS sequence analysis and the antioxidant activity of its polysaccharide was determined. The properties of polysaccharides were analyzed by ultraviolet spectrum, Fourier transform infrared spectrum and high performance liquid chromatography. The results showed that significant differences in the nutrition, active ingredient content and polysaccharide antioxidant activity of different species were observed. The contents of crude fiber, crude protein, polysaccharide, total phenol, total flavone and total triterpene in S-4 were relatively high, while the contents of crude fat and ash were relatively low. S-4 polysaccharides demonstrated excellent DPPH radical, ABTS+ radical and O2 radical scavenging ability, and the half-inhibitory concentration (IC50) were 35.07, 12.87 and 91.34 μg/mL, respectively. The scavenging ability of S-4 polysaccharides against ABTS+ radical was equivalent to that of ascorbic acid. S-4 was used as the target Phellinus igniarius, and was identified as Sanghuangporus vaninii. Ultraviolet, infrared spectrum and monosaccharide composition analysis showed that S-4 polysaccharides had typical polysaccharide characteristic absorption peak, which was composed of glucose, galactose, fucose, glucuronic acid, ribose and mannose, containing β-glycoside bond and furan ring. The S-4 was relatively rich in nutrients and active ingredients, and its polysaccharides had good antioxidant capacity, which would provide a reference for the screening of excellent Phellinus igniarius fruiting bodies and the development and utilization of polysaccharides.
  • [1]
    包海鹰, 杨烁, 李庆杰, 等. “桑黄”的本草补充考证[J]. 菌物研究,2017,15(4):264−270

    BAO H Y, YANG S, LI Q J, et al. Supplementary textual research on “ Sanghuang”[J]. Journal of Fungal Research,2017,15(4):264−270.
    [2]
    雷萍, 张文隽, 吴亚召, 等. 鲍姆桑黄五个品种栽培特性及功能成分的比较分析[J]. 菌物学报,2022,41(2):274−280

    LEI P, ZHANG W J, WU Y Z, et al. Comparative analysis of cultivation characteristics and functional constituents of five varieties of Sang huangporus baumii[J]. Mycosystema,2022,41(2):274−280.
    [3]
    朱琳, 崔宝凯. 药用真菌桑黄的研究进展[J]. 菌物研究,2016,14(4):201−209

    ZHU L, CUI B K. Progress on the studies of medicinal mushrooms “ Sanghuang” group[J]. Journal of Fungal Research,2016,14(4):201−209.
    [4]
    吴声华, 戴玉成. 药用真菌桑黄的种类解析[J]. 菌物学报,2020,39(5):781−794

    WU S H, DAI Y C. Species clarification of the medicinal fungus Sanghuang[J]. Mycosystema,2020,39(5):781−794.
    [5]
    付立忠, 陆娜, 闫静, 等. 三种桑黄属真菌人工栽培子实体营养、药效成分及抗氧化活性分析评价[J]. 菌物学报,2021,40(8):2148−2158

    FU L Z, LU N, YAN J, et al. Analyses and evaluation of nutrition, active component and antioxidant activities of fruiting bodies of three species of Sanghuangporus[J]. Mycosystema,2021,40(8):2148−2158.
    [6]
    ZHANG J J, CHEN B S, DAI H Q, et al. Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang[J]. Chinese Journal of Natural Medicines,2021,19(9):693−699. doi: 10.1016/S1875-5364(21)60101-2
    [7]
    李瑞雪, 王钰婷, 夏家凤, 等. 桑黄菌丝体中多糖提取工艺优化及其体外抗氧化活性分析[J]. 中国农学通报,2019,35(29):143−150

    LI R X, WANG Y T, XIA J F, et al. Optimization of extraction process of polysaccharide of Phellinus igniarius mycelium and analysis of its antioxidant activity in vitro[J]. Chinese Agricultural Science Bulletin,2019,35(29):143−150.
    [8]
    CHENG J W, SONG J L, WANG Y B, et al. Conformation and anticancer activity of a novel mannogalactan from the fruiting bodies of Sanghuangporus sanghuang on HepG2 cells[J]. Food Research International,2022,156:111336. doi: 10.1016/j.foodres.2022.111336
    [9]
    HOU R R, ZHOU L J, FU Y, et al. Chemical characterization of two fractions from Sanghuangporus sanghuang and evaluation of antidiabetic activity[J]. Journal of Functional Foods,2021,87:104825. doi: 10.1016/j.jff.2021.104825
    [10]
    刘帅, 莫俊恺, 潘丹阳, 等. 桑黄多糖的药理作用及提取方法研究进展[J]. 生物技术通报,2018,34(12):63−67

    LIU S, MO J K, PAN D Y, et al. Research progress on pharmacological actions and extraction methods of polysaccharide from Phellinus igniarius[J]. Biotechnology Bulletin,2018,34(12):63−67.
    [11]
    胡涛. 桑黄多糖抗炎与降脂功能的评估及其分子机理研究[D]. 长沙:中南林业科技大学, 2019

    HU T. The anti-inflammation and lipid-lowering effects and the potential molecular mechanism of Phellinus linteus[D]. Changsha:Central South University of Forestry and Technology, 2019.
    [12]
    郎明紫, 曾鹏, 刘明明, 等. 桑黄多糖的研究进展[J]. 蚕桑通报,2017,48(2):14−18

    LANG M Z, ZENG P, LIU M M, et al. Research progress on polysaccharide from Phellinus baumii[J]. Bulletin of Sericulture,2017,48(2):14−18.
    [13]
    李彦颖, 张祺, 陈晓华, 等. 桑黄多糖的分离纯化、生物活性及其产品开发研究进展[J]. 食药用菌, 2022, 30(1):26-31,61

    LI Y Y, ZHANG Q, CHEN X H, et al. Research progress in purification, bio-activity and product development of polysaccharides from Sanghuangporus polysaccharides from Sanghuangporus[J]. Edible and Medicinal Mushrooms, 2022, 30(1):26-31,61.
    [14]
    李小群, 梁贵秋, 刘开莉, 等. 桑黄活性成分的提取方法及应用研究进展[J]. 广西蚕业,2022,59(1):41−50

    LI X Q, LIANG G Q, LIU K L, et al. Research progress on extraction methods and application of active components of Phellinus igniarius[J]. Guangxi Sericulture,2022,59(1):41−50.
    [15]
    王青春. 桑黄酒的研制及其质量评价[D]. 长春:吉林农业大学, 2022

    WANG Q C. Development and quality evaluation of Sanghuang wine[D]. Changchun:Jilin Agricultural University, 2022.
    [16]
    王婷. 粗毛纤孔菌的驯化栽培及其固体发酵菌粉抗肿瘤作用和产品开发[D]. 长春:吉林农业大学, 2016

    WANG T. Research on domestication and cultivation of Inonotus hispidus and antitumor activity of its solid fermentation power and developing new product with it[D]. Changchun:Jilin Agricultural University, 2016.
    [17]
    邵伟, 陈良辉, 熊泽, 等. 桑黄液体发酵茶饮料工艺研究[J]. 中国酿造,2016,35(12):184−187

    SHAO W, CHEN L H, XIONG Z, et al. Study on the process of Phellinus igniarius tea beverage with submerged fermentatio[J]. China Brewing,2016,35(12):184−187.
    [18]
    李小欢, 谢远娇, 王欢, 等. 不同栽培基质桑黄化学成分及抗氧化活性比较[J]. 食品安全质量检测学报, 2021, 12(23):9183−9188

    LI X H, XIE Y J, WANG H, et al. Comparison of chemical constituents and antioxidant activities of SangHuangprous vaninii in different substrates[J]. Journal of Food Safety and Quality, 2016, 35(12):184−187.
    [19]
    王伟科, 宋吉玲, 闫静, 等. 采收期对代料栽培桑黄子实体活性成分含量和抗氧化活性的影响[J]. 菌物学报, 2020, 39(12):2369−2379

    WANG W K, SONG J L, YAN J, et al. Effects of harvest time on content of active components and antioxidant activities of fruiting bodies of Sanghuangporus cultivated with substitute materials[J]. Mycosystema, 2020, 39(12):2369−2379.
    [20]
    胡文继. 猴头菌发酵菌丝体纯化多糖的抗阿尔茨海默症活性研究[D]. 长春:吉林大学, 2021

    HU W J. Study on the anti-Alzheimer′s disease activity of purified polysaccharides from Hericium erinaceus fermentation mycelium[D]. Changchun, Jilin University, 2021.
    [21]
    吴亚召, 雷萍, 张文隽, 等. 桑黄黄酮液体发酵培养基的优化[J]. 中国食用菌,2016,35(5):21−23,27 doi: 10.13629/j.cnki.53-1054.2016.05.006

    WU Y Z, LEI P, ZHANG W J, et al. Optimization of liquid medium for fermenting flavones from Phellinus linteus[J]. Edible Fungi of China,2016,35(5):21−23,27. doi: 10.13629/j.cnki.53-1054.2016.05.006
    [22]
    张梅梅, 魏志文, 刘玉冰, 等. Folin-Ciocalteu比色法测定桦褐孔菌多酚的条件优化[J]. 菌物学报,2011,30(2):295−304

    ZHANG M M, WEI Z W, LIU Y B, et al. Optimization on determination of polyphenols from Inonotus obliquus by Folin-Ciocalteu colorimetry[J]. Mycosystema,2011,30(2):295−304.
    [23]
    PAN L C, ZHU Y M, ZHU Z Y, et al. Chemical structure and effects of antioxidation and against α-glucosidase of natural polysaccharide from Glycyrrhiza inflata Batalin[J]. International Journal of Biological Macromolecules,2020,155:560−571. doi: 10.1016/j.ijbiomac.2020.03.192
    [24]
    连俊辉. 花脸香蘑菌丝体多糖的提取、抗氧化性及其益生活性研究[D]. 长春:吉林大学, 2021

    LIAN J H. Study on extraction, antioxidant activity and probiotics activity of polysaccharide from mycelia of Lepista Sordida[D]. Changchun:Jilin University, 2021.
    [25]
    徐高飞. 七种食药用菌子实体的营养和功能成分及抗氧化分析[D]. 南宁:广西大学, 2020

    XU G F. Analysis of nutritional and functional components and antioxidation of fruiting bodies among seven edible and medicinal musheroom[D]. Nanning:Guangxi University, 2020.
    [26]
    张晨. 杏鲍菇菌丝体多糖的分离纯化及抗衰老、抗糖尿病活性分析[D]. 泰安:山东农业大学, 2018

    ZHANG C. Purification, anti-aging and anti-diabetic effects of mycelia polysaccharides feom Pleurotus eryngii[D]. Taian:Shandong Agricultural University, 2018.
    [27]
    ZHANG H, NIE S P, CUI S W, et al. Characterization of a bioactive polysaccharide from Ganoderma atrum:Re-elucidation of the fine structure[J]. Carbohydrate Polymers,2017,158:58−67. doi: 10.1016/j.carbpol.2016.11.088
    [28]
    WANG J, CHEN H X, WANG Y W, et al. Synthesis and characterization of a new Inonotus obliquus polysaccharide-iron (III) complex[J]. International Journal of Biological Macromolecules,2015,75:210−217. doi: 10.1016/j.ijbiomac.2015.01.041
    [29]
    岳雨曦, 王小燕, 柏丁丁, 等. 野阳合多糖及其纯化组分对胆汁酸的结合能力[J]. 食品科学,2018,39(12):154−160

    YUE Y X, WANG X Y, BAI D D, et al. Characterization and bile acid-binding ability of polysaccharides purified from tubers of Habenaria ciliolaris Kranzl its fractions[J]. Food Science,2018,39(12):154−160.
    [30]
    GAO Z, YUAN F F, LI H P, et al. The ameliorations of Ganoderma applanatum residue polysaccharides against CCl4 induced liver injury[J]. International Journal of Biological Macromolecules,2019,137:1130−1140. doi: 10.1016/j.ijbiomac.2019.07.044
    [31]
    CHEN Z, ZHANG W, TANG X Y, et al. Extraction and characterization of polysaccharides from Semen Cassiae by microwave-assisted aqueous two-phase extraction coupled with spectroscopy and HPLC[J]. Carbohydrate Polymers,2016,144:263−270. doi: 10.1016/j.carbpol.2016.02.063
    [32]
    LI S H, GAO A, DONG S, et al. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta[J]. International Journal of Biological Macromolecules,2017,96:26−34. doi: 10.1016/j.ijbiomac.2016.12.007
    [33]
    赵彪希, 张海德, 张媚健, 等. 冬虫夏草多糖单糖组成及免疫活性研究[J]. 食品工业科技,2020,41(13):27−31 doi: 10.13386/j.issn1002-0306.2020.13.005

    ZHAO B X, ZHANG H D, ZHANG M J, et al. The Monosaccharides composition and immune activity of polysaccharides from Cordyceps sinensis[J]. Science and Technology of Food Industry,2020,41(13):27−31. doi: 10.13386/j.issn1002-0306.2020.13.005
    [34]
    XU S Y, LIU J P, HUANG X S, et al. Ultrasonic-microwave assisted extraction, characterization and biological activity of pectin from jackfruit peel[J]. LWT-Food Science and Technology,2018,90:577−582. doi: 10.1016/j.lwt.2018.01.007
    [35]
    DU Y Q, LIU Y, WANG J H. Polysaccharides from Umbilicaria esculenta cultivated in Huangshan Mountain and immunomodulatory activity[J]. International Journal of Biological Macromolecules,2015,72:1272−1276. doi: 10.1016/j.ijbiomac.2014.09.057
    [36]
    张建军. 红平菇菌丝体多糖的提取、结构分析和抗糖尿病作用研究[D]. 泰安:山东农业大学, 2016

    ZHANG J J. Studies on the extraction, characterization, and anti-diabetic effects of mycelia polysaccarides from Pleurotus djamor[D]. Taian:Shandong Agricultural University, 2016.
    [37]
    LUO X P, DUAN Y Q, YANG W Y, et al. Structural elucidation and immunostimulatory activity of polysaccharide isolated by subcritical water extraction from Cordyceps militaris[J]. Carbohydrate Polymers,2017,157:794−802. doi: 10.1016/j.carbpol.2016.10.066
    [38]
    WAN X L, JIN X, WU X M, et al. Structural characterisation and antitumor activity against non-small cell lung cancer of polysaccharides from Sanghuangporus vaninii[J]. Carbohydrate Polymers,2022,276:118798. doi: 10.1016/j.carbpol.2021.118798
    [39]
    李有贵, 钟石, 计东风. 野生与人工栽培桑黄子实体中的粗多糖和粗酚含量及药用活性比较[J]. 蚕业科学, 2016, 425): 882891.

    LI Y G, ZHONG S, JI D F. A comparison on contents and medicinal activities of crude polysaccharides and crude polyphenols between wild and cultivated fruit bodies of Phellinus spp.[J]. Science of Sericulture, 2016, 425): 882891.
    [40]
    蔡铭, 陈思, 骆少磊, 等. 膜分离与醇沉技术纯化猴头菇粗多糖的比较[J]. 食品科学,2019,40(9):83−90

    CAI M, CHEN S, LUO S L, et al. Comparison of membrane separation and alcohol precipitation for the separation of crude polysaccharides from Hericium erinaceus[J]. Food Science,2019,40(9):83−90.
  • Cited by

    Periodical cited type(9)

    1. 陈金足,韦晓雯,农晶晶,韩丽芳,冯学,唐婷范,李利军,程昊. 氢氧化镁-活性炭复合材料的制备及其对糖浆脱色工艺优化. 食品工业科技. 2025(01): 201-207 . 本站查看
    2. 郑婷婷,吕建彪,龚婉莹,王礼中,张文杰,严亮. 白及叶多糖脱色脱蛋白质方法及其抗氧化活性研究. 粮食与油脂. 2024(03): 86-90+105 .
    3. 杨紫焰,李自霖,张翠香,黄丽金,陈贵元,李雪英. 响应面法优选穿心莲多糖大孔树脂脱色工艺及其抗氧化活性研究. 安徽农学通报. 2024(10): 89-95 .
    4. 潘金涛,沈晓岩,陈亮,武小芬,齐慧,刘安,魏东宁,邓明. 油茶壳低聚木糖水热处理液脱色条件优化. 湖南农业科学. 2024(11): 76-80+95 .
    5. 赵玉荣,许金玉,侯宪邦,陆姗姗. 酶解法提取夏枯草中多糖的工艺研究. 药品评价. 2024(08): 946-950 .
    6. 郑艳宇,王平,刘思冶,郝明洋,赵思远,薛晓丽. 黄精多糖的树脂法脱色. 吉林化工学院学报. 2024(09): 41-46 .
    7. 黄丽金,李自霖,陈贵元. 响应面法优化苦胆草多糖脱色工艺. 安徽农学通报. 2023(09): 157-160+170 .
    8. 黄丽金,陈贵元. 苦胆草多糖活性炭脱色工艺研究. 安徽农学通报. 2023(13): 32-36 .
    9. 李自霖,陈贵元. 中药多糖提取物脱色工艺研究进展. 安徽农学通报. 2023(13): 37-40 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (186) PDF downloads (20) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return