Citation: | YU Shuaipeng, CUI Yue, WANG Lin, et al. Research Advances in the Multiscale Protein-polysaccharide Based Systems for Probiotics Delivery[J]. Science and Technology of Food Industry, 2023, 44(17): 470−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010081. |
[1] |
SÁNCHEZ B, DELGADO S, BLANCO-MÍGUEZ A, et al. Probiotics, gut microbiota, and their influence on host health and disease[J]. Molecular Nutrition and Food Research,2017,61(1):1600240. doi: 10.1002/mnfr.201600240
|
[2] |
CUNNINGHAM M, AZCARATE-PERIL M A, BARNARD A, et al. Shaping the future of probiotics and prebiotics[J]. Trends in Microbiology,2021,29(8):667−685. doi: 10.1016/j.tim.2021.01.003
|
[3] |
FLACH J, VAN DER WAAL M B, VAN DEN NIEUWBOER M, et al. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters[J]. Critical Reviews in Food Science and Nutrition,2018,58(15):2570−2584. doi: 10.1080/10408398.2017.1334624
|
[4] |
SINGH J, VYAS A. In advances in dairy microbial products[M]. Sawston: Woodhead Publishing, 2022: 295−302.
|
[5] |
TRIPATHI M K, GIRI S K. Probiotic functional foods: Survival of probiotics during processing and storage[J]. Journal of Functional Foods,2014,9:225−241. doi: 10.1016/j.jff.2014.04.030
|
[6] |
FENG K, WEI Y, HU T, et al. Colon-targeted delivery systems for nutraceuticals: A review of current vehicles, evaluation methods and future prospects[J]. Trends in Food Science & Technology,2020,102:203−222.
|
[7] |
MIN M, BUNT C R, MASON S L, et al. Non-dairy probiotic food products: An emerging group of functional foods[J]. Critical Reviews in Food Science and Nutrition,2019,59(16):2626−2641. doi: 10.1080/10408398.2018.1462760
|
[8] |
GU Q, YIN Y, YAN X, et al. Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review[J]. Advances in Colloid and Interface Science,2022,309:102781. doi: 10.1016/j.cis.2022.102781
|
[9] |
DAS T K, PRADHAN S, CHAKRABARTI S, et al. Current status of probiotic and related health benefits[J]. Applied Food Research,2022,2(2):100185. doi: 10.1016/j.afres.2022.100185
|
[10] |
RAZAVI S, JANFAZA S, TASNIM N, et al. Microencapsulating polymers for probiotics delivery systems: preparation, characterization, and applications[J]. Food Hydrocolloids, 2021: 106882.
|
[11] |
GENTILE L. Protein-polysaccharide interactions and aggregates in food formulations[J]. Current Opinion in Colloid & Interface Science,2020,48:18−27.
|
[12] |
JIANG Z, LI M, MCCLEMENTS D J, et al. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation[J]. Food Hydrocolloids,2022,125:107438. doi: 10.1016/j.foodhyd.2021.107438
|
[13] |
YI J, LAM T I, YOKOYAMA W, et al. Controlled release of β-carotene in β-lactoglobulin-dextran-conjugated nanoparticles' in vitro digestion and transport with Caco-2 monolayers[J]. J Agric Food Chem,2014,62(35):8900−8907. doi: 10.1021/jf502639k
|
[14] |
YANG Z, MCCLEMENTS D J, LI C, et al. Targeted delivery of hydrogels in human gastrointestinal tract: A review[J]. Food Hydrocolloids,2023,134:108013. doi: 10.1016/j.foodhyd.2022.108013
|
[15] |
CHEN Y, SONG H, WU M, et al. Application of protein-polysaccharide complex system in the delivery of active ingredients[J]. Progress in Chemistry,2022,34(10):2267−2282.
|
[16] |
WANG J, HAN X, LI T, et al. Mechanism and application of emulsifiers for stabilizing emulsions: a review[J]. Food Science,2020,41(21):303−310.
|
[17] |
WANG S, FENG Y, WU J, et al. Formation mechanism of protein-polysaccharide multi-scale complexes and their future applications[J]. Food Science,2021,42(17):1−9.
|
[18] |
LIU K, CHEN Y Y, ZHA X Q, et al. Research progress on polysaccharide/protein hydrogels: Preparation method, functional property and application as delivery systems for bioactive ingredients[J]. Food Research International,2021,147:110542. doi: 10.1016/j.foodres.2021.110542
|
[19] |
KAN X, CHEN G, ZHOU W, et al. Application of protein-polysaccharide Maillard conjugates as emulsifiers: Source, preparation and functional properties[J]. Food Research International,2021,150:110740. doi: 10.1016/j.foodres.2021.110740
|
[20] |
KE C, LI L. Influence mechanism of polysaccharides induced Maillard reaction on plant proteins structure and functional properties: A review[J]. Carbohydrate Polymers,2023,302:120430. doi: 10.1016/j.carbpol.2022.120430
|
[21] |
SPOTTI M J, LOYEAU P A, MARANGÓN A, et al. Influence of Maillard reaction extent on acid induced gels of whey proteins and dextrans[J]. Food Hydrocolloids,2019,91:224−231. doi: 10.1016/j.foodhyd.2019.01.020
|
[22] |
CHENG Y H, MU D C, JIAO Y, et al. Microwave-assisted maillard reaction between rice protein and dextran induces structural changes and functional improvements[J]. Journal of Cereal Science,2021,97:103134. doi: 10.1016/j.jcs.2020.103134
|
[23] |
CHENG Y H, MU D C, FENG Y Y, et al. Glycosylation of rice protein with dextran via the Maillard reaction in a macromolecular crowding condition to improve solubility[J]. Journal of Cereal Science,2022,103:103374. doi: 10.1016/j.jcs.2021.103374
|
[24] |
ZHENG Y, LI Z, LU Z, et al. Structural characteristics and emulsifying properties of lotus seed protein isolate-dextran glycoconjugates induced by a dynamic high pressure microfluidization Maillard reaction[J]. LWT,2022,160:113309. doi: 10.1016/j.lwt.2022.113309
|
[25] |
LI M, WEN X, WANG K, et al. Maillard induced glycation of β-casein for enhanced stability of the self-assembly micelles against acidic and calcium environment[J]. Food Chemistry,2022,387:132914. doi: 10.1016/j.foodchem.2022.132914
|
[26] |
NAGARAJU P G, P S, DUBEY T, et al. Influence of sodium caseinate, maltodextrin, pectin and their Maillard conjugate on the stability, in vitro release, anti-oxidant property and cell viability of eugenol-olive oil nanoemulsions[J]. International Journal of Biological Macromolecules,2021,183:158−170. doi: 10.1016/j.ijbiomac.2021.04.122
|
[27] |
SETIOWATI A D, SAEEDI S, WIJAYA W, et al. Improved heat stability of whey protein isolate stabilized emulsions via dry heat treatment of WPI and low methoxyl pectin: effect of pectin concentration, pH, and ionic strength[J]. Food Hydrocolloids,2017,63:716−726. doi: 10.1016/j.foodhyd.2016.10.025
|
[28] |
ZHANG N, ZHOU Q, FAN D, et al. Novel roles of hydrocolloids in foods: inhibition of toxic maillard reaction products formation and attenuation of their harmful effects[J]. Trends in Food Science & Technology,2021,111:706−715.
|
[29] |
SEDAGHAT DOOST A, NIKBAKHT NASRABADI M, WU J, et al. Maillard conjugation as an approach to improve whey proteins functionality: A review of conventional and novel preparation techniques[J]. Trends in Food Science & Technology,2019,91:1−11.
|
[30] |
WU T, LIU C, HU X. Enzymatic synthesis, characterization and properties of the protein-polysaccharide conjugate: A review[J]. Food Chemistry,2022,372:131332. doi: 10.1016/j.foodchem.2021.131332
|
[31] |
CHEN H, JI A, QIU S, et al. Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties[J]. Food Hydrocolloids,2018,76:173−183. doi: 10.1016/j.foodhyd.2016.12.004
|
[32] |
ZHANG J, WOLF B. Physico-chemical properties of sugar beet pectin-sodium caseinate conjugates via different interaction mechanisms[J]. Foods,2019,8(6):192. doi: 10.3390/foods8060192
|
[33] |
FALSAFI S R, ROSTAMABADI H, SAMBORSKA K, et al. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes[J]. Pharmacological Research,2022,178:106164. doi: 10.1016/j.phrs.2022.106164
|
[34] |
AZEREDO H M C, WALDRON K W. Crosslinking in polysaccharide and protein films and coatings for food contact–A review[J]. Trends in Food Science & Technology,2016,52:109−122.
|
[35] |
ALAVARSE A C, FRACHINI E C G, DA SILVA R L C G, et al. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review[J]. International Journal of Biological Macromolecules,2022,202:558−596. doi: 10.1016/j.ijbiomac.2022.01.029
|
[36] |
AI C, ZHAO C, GUO X, et al. Physicochemical properties of whey protein isolate and alkaline soluble polysaccharide from sugar beet pulp conjugates formed by Maillard reaction and genipin crosslinking reaction: A comparison study[J]. Food Chemistry:X,2022,14:100358. doi: 10.1016/j.fochx.2022.100358
|
[37] |
ZHANG Q, ZHOU Y, YUE W, et al. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds[J]. Trends in Food Science & Technology,2021,109:169−196.
|
[38] |
CAO Y, MEZZENGA R. Design principles of food gels[J]. Nature Food,2020,1(2):106−118. doi: 10.1038/s43016-019-0009-x
|
[39] |
XU D, LIU Z, AN Z, et al. Incorporation of probiotics into 3D printed Pickering emulsion gel stabilized by tea protein/xanthan gum[J]. Food Chemistry,2023,409:135289. doi: 10.1016/j.foodchem.2022.135289
|
[40] |
SU J, CAI Y, ZHI Z, et al. Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin[J]. Carbohydrate Polymers,2021,254:117446. doi: 10.1016/j.carbpol.2020.117446
|
[41] |
RIAZ T, IQBAL M W, SAEED M, et al. In vitro survival of Bifidobacterium bifidum microencapsulated in zein-coated alginate hydrogel microbeads[J]. J Microencapsul,2019,36(2):192−203. doi: 10.1080/02652048.2019.1618403
|
[42] |
GUO Q, TANG J, LI S, et al. Lactobacillus plantarum 21805 encapsulated by whey protein isolate and dextran conjugate for enhanced viability[J]. International Journal of Biological Macromolecules,2022,216:124−131. doi: 10.1016/j.ijbiomac.2022.06.207
|
[43] |
PEÑALVA R, MARTÍNEZ-LÓPEZ A L, GAMAZO C, et al. Encapsulation of Lactobacillus plantarum in casein-chitosan microparticles facilitates the arrival to the colon and develops an immunomodulatory effect[J]. Food Hydrocolloids,2023,136:108213. doi: 10.1016/j.foodhyd.2022.108213
|
[44] |
VANDEN BRABER N L, DÍAZ VERGARA L I, ROSSI Y E, et al. Effect of microencapsulation in whey protein and water-soluble chitosan derivative on the viability of the probiotic Kluyveromyces marxianus VM004 during storage and in simulated gastrointestinal conditions[J]. LWT,2020,118:108844. doi: 10.1016/j.lwt.2019.108844
|
[45] |
SILVA M P, TULINI F L, MATOS-JR F E, et al. Application of spray chilling and electrostatic interaction to produce lipid microparticles loaded with probiotics as an alternative to improve resistance under stress conditions[J]. Food Hydrocolloids,2018,83:109−117. doi: 10.1016/j.foodhyd.2018.05.001
|
[46] |
BORA A F M, KOUAME K J E-P, LI X, et al. Development, characterization and probiotic encapsulating ability of novel Momordica charantia bioactive polysaccharides/whey protein isolate composite gels[J]. International Journal of Biological Macromolecules,2023,225:454−466. doi: 10.1016/j.ijbiomac.2022.11.097
|
[47] |
KRUNIĆ T Ž, OBRADOVIĆ N S, RAKIN M B. Application of whey protein and whey protein hydrolysate as protein based carrier for probiotic starter culture[J]. Food Chemistry,2019,293:74−82. doi: 10.1016/j.foodchem.2019.04.062
|
[48] |
ZHANG H, WEI S, YAN J, et al. Development of double layer microcapsules for enhancing the viability of Lactobacillus casei LC2W in simulated gastrointestinal fluids[J]. LWT,2021,145:111319. doi: 10.1016/j.lwt.2021.111319
|
[49] |
李春, 刘丽波, 张国芳, 等. 一种包埋植物乳杆菌乳剂及其制备方法和应用CN115558659A[P]. 2023-01-03.
LI C, LIU L, ZHANG G, et al. Embedded lactobacillus plantarum emulsion and preparation method and application thereof. China, 115558659A[P]. 2023-01-03.
|
[50] |
ZHANG Y, LIN J, ZHONG Q. The increased viability of probiotic Lactobacillus salivarius NRRL B-30514 encapsulated in emulsions with multiple lipid-protein-pectin layers[J]. Food Research International,2015,71:9−15. doi: 10.1016/j.foodres.2015.02.017
|
[51] |
LIU H, GONG J, CHABOT D, et al. Incorporation of polysaccharides into sodium caseinate-low melting point fat microparticles improves probiotic bacterial survival during simulated gastrointestinal digestion and storage[J]. Food Hydrocolloids,2016,54:328−337. doi: 10.1016/j.foodhyd.2015.10.016
|
[52] |
PAULA D D A, MARTINS E M F, COSTA N D A, et al. Use of gelatin and gum arabic for microencapsulation of probiotic cells from Lactobacillus plantarum by a dual process combining double emulsification followed by complex coacervation[J]. International Journal of Biological Macromolecules,2019,133:722−731. doi: 10.1016/j.ijbiomac.2019.04.110
|
[53] |
KRITHIKA B, PREETHA R. Formulation of protein based inulin incorporated synbiotic nanoemulsion for enhanced stability of probiotic[J]. Materials Research Express,2019,6(11):114003. doi: 10.1088/2053-1591/ab4d1a
|
[54] |
MCCLEMENTS D J. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects[J]. Advances in Colloid and Interface Science,2017,240:31−59. doi: 10.1016/j.cis.2016.12.005
|
[55] |
YUAN Y, YIN M, ZHAI Q, et al. The encapsulation strategy to improve the survival of probiotics for food application: From rough multicellular to single-cell surface engineering and microbial mediation[J]. Critical Reviews in Food Science and Nutrition, 2022: 1−17.
|
[56] |
YAN W, JIA X, ZHANG Q, et al. Interpenetrating polymer network hydrogels of soy protein isolate and sugar beet pectin as a potential carrier for probiotics[J]. Food Hydrocolloids,2021,113:106453. doi: 10.1016/j.foodhyd.2020.106453
|
[57] |
PUSHPAMALAR J, SATHASIVAM T, GUGLER M C. Hydrogel beads of natural polymers as a potential vehicle for colon-targeted drug delivery[J]. Methods in Molecular Biology,2021,2211:171−182.
|
[58] |
KWIECIEŃ I, KWIECIEŃ M. Application of polysaccharide-based hydrogels as probiotic delivery systems[J]. Gels, 2018, 4(2).
|
[59] |
WEI Z, HUANG Q. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper[J]. Journal of Agricultural and Food Chemistry,2019,67(5):1344−1352. doi: 10.1021/acs.jafc.8b06063
|
[60] |
ALEHOSSEINI A, GOMEZ DEL PULGAR E-M, FABRA M J, et al. Agarose-based freeze-dried capsules prepared by the oil-induced biphasic hydrogel particle formation approach for the protection of sensitive probiotic bacteria[J]. Food Hydrocolloids,2019,87:487−496. doi: 10.1016/j.foodhyd.2018.08.032
|
[61] |
NI F, LUO X, ZHAO Z, et al. Enhancing viability of Lactobacillus plantarum encapsulated by alginate-gelatin hydrogel beads during gastrointestinal digestion, storage and in the mimic beverage systems[J]. International Journal of Biological Macromolecules,2023,224:94−104. doi: 10.1016/j.ijbiomac.2022.10.106
|
[62] |
GAO Y, WANG X, XUE C, et al. Latest developments in food-grade delivery systems for probiotics: A systematic review[J]. Critical Reviews in Food Science and Nutrition, 2021: 1−18.
|
[63] |
MAO L, PAN Q, HOU Z, et al. Development of soy protein isolate-carrageenan conjugates through Maillard reaction for the microencapsulation of Bifidobacterium longum[J]. Food Hydrocolloids,2018,84:489−497. doi: 10.1016/j.foodhyd.2018.06.037
|
[64] |
MAO L, PAN Q, YUAN F, et al. Formation of soy protein isolate-carrageenan complex coacervates for improved viability of Bifidobacterium longum during pasteurization and in vitro digestion[J]. Food Chemistry,2019,276:307−314. doi: 10.1016/j.foodchem.2018.10.026
|
[65] |
马铁铮, 赵宏亮. 一种基于复合凝聚法制备益生菌微胶囊的方法与应用CN115381101A[P]. 2022-11-25.
MA T, ZHAO H. Method for preparing probiotic microcapsules based on complex coacervation method and application. China, 115381101A[P]. 2022-11-25.
|
[66] |
DU M, LU W F, ZHANG Y, et al. Natural polymer-sourced interpenetrating network hydrogels: Fabrication, properties, mechanism and food applications[J]. Trends in Food Science & Technology,2021,116:342−356.
|
[67] |
DE ARAÚJO ETCHEPARE M, NUNES G L, NICOLOSO B R, et al. Improvement of the viability of encapsulated probiotics using whey proteins[J]. LWT,2020,117:108601. doi: 10.1016/j.lwt.2019.108601
|
[68] |
SUN X, WANG H, LI S, et al. Maillard-type protein-polysaccharide conjugates and electrostatic protein-polysaccharide complexes as delivery vehicles for food bioactive ingredients: formation, types, and applications[J]. Gels,2022,8(2):135. doi: 10.3390/gels8020135
|
[69] |
WANG X, LI X, XU D, et al. Comparision of heteroaggregation, layer-by-layer and directly mixing techniques on the physical properties and in vitro digestion of emulsions[J]. Food Hydrocolloids,2019,95:228−237. doi: 10.1016/j.foodhyd.2019.04.034
|
[70] |
QIN X S, GAO Q Y, LUO Z G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus Plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles[J]. Food Hydrocolloids,2021,116:106658. doi: 10.1016/j.foodhyd.2021.106658
|
[71] |
HAN K, YAO Y, DONG S, et al. Chemical characterization of the glycated myofibrillar proteins from grass carp (Ctenopharyngodon idella) and their impacts on the human gut microbiota in vitro fermentation[J]. Food & Function,2017,8(3):1184−1194.
|
[72] |
KAN X, HU Y, HUANG Y, et al. Characterization of whey protein isolate-gum Arabic Maillard conjugate and evaluation of the effects of conjugate-stabilized emulsion on microbiota of human fecal cultures[J]. Food Hydrocolloids,2023,134:108060. doi: 10.1016/j.foodhyd.2022.108060
|
[73] |
FINOT P-A. The absorption and metabolism of modified amino acids in processed foods[J]. Journal of AOAC International,2019,88(3):894−903.
|
[74] |
CUI F, HAN S, WANG J, et al. Co-delivery of curcumin and epigallocatechin gallate in W/O/W emulsions stabilized by protein fibril-cellulose complexes[J]. Colloids and Surfaces B:Biointerfaces,2023,222:113072. doi: 10.1016/j.colsurfb.2022.113072
|
[75] |
QIN X S, LUO Z G, LI X L. An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release[J]. Food Hydrocolloids,2021,113:106460. doi: 10.1016/j.foodhyd.2020.106460
|
[76] |
KUMAR A, KAUR R, KUMAR V, et al. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications[J]. Trends in Food Science & Technology,2022,128:22−37.
|
[77] |
BALCAEN M, VERMEIR L, VAN DER MEEREN P. Influence of protein type on Polyglycerol Polyricinoleate replacement in W/O/W (water-in-oil-in-water) double emulsions for food applications[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2017,535:105−113.
|
[78] |
BALCAEN M, STEYLS J, SCHOEPPE A, et al. Phosphatidylcholine-depleted lecithin: A clean-label low-HLB emulsifier to replace PGPR in w/o and w/o/w emulsions[J]. Journal of Colloid and Interface Science,2021,581:836−846. doi: 10.1016/j.jcis.2020.07.149
|
[79] |
SHARIFI S, REZAZAD-BARI M, ALIZADEH M, et al. Use of whey protein isolate and gum arabic for the co-encapsulation of probiotic Lactobacillus plantarum and phytosterols by complex coacervation: enhanced viability of probiotic in Iranian white cheese[J]. Food Hydrocolloids,2021,113:106496. doi: 10.1016/j.foodhyd.2020.106496
|
[80] |
TASCH HOLKEM A, FAVARO-TRINDADE C S. Potential of solid lipid microparticles covered by the protein-polysaccharide complex for protection of probiotics and proanthocyanidin-rich cinnamon extract[J]. Food Research International,2020,136:109520. doi: 10.1016/j.foodres.2020.109520
|
[81] |
BELDARRAIN-IZNAGA T, VILLALOBOS-CARVAJAL R, SEVILLANO-ARMESTO E, et al. Functional properties of Lactobacillus casei C24 improved by microencapsulation using multilayer double emulsion[J]. Food Research International,2021,141:110136. doi: 10.1016/j.foodres.2021.110136
|
[82] |
SHIN M J, SHIN Y J, HWANG S W, et al. Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion[J]. Journal of Applied Polymer Science,2013,129(3):1036−1044. doi: 10.1002/app.38767
|
[83] |
RODRIGUES F J, CEDRAN M F, BICAS J L, et al. Encapsulated probiotic cells: Relevant techniques, natural sources as encapsulating materials and food applications–A narrative review[J]. Food Research International,2020,137:109682. doi: 10.1016/j.foodres.2020.109682
|
[84] |
DING X, XU Y, WANG Y, et al. Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized double emulsions incorporated into alginate hydrogel beads for the encapsulation, protection and delivery of probiotics[J]. Carbohydrate Polymers,2022,289:119438. doi: 10.1016/j.carbpol.2022.119438
|
[85] |
XU C, BAN Q, WANG W, et al. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems[J]. Journal of Controlled Release,2022,349:184−205. doi: 10.1016/j.jconrel.2022.06.061
|
[86] |
REQUE P M, BRANDELLI A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry[J]. Trends in Food Science & Technology,2021,114:1−10.
|
[87] |
AHMAD M, GANI A, HAMED F, et al. Comparative study on utilization of micro and nano sized starch particles for encapsulation of camel milk derived probiotics (Pediococcus acidolactici)[J]. LWT,2019,110:231−238. doi: 10.1016/j.lwt.2019.04.078
|
[88] |
MENDES A C, CHRONAKIS I S. Electrohydrodynamic encapsulation of probiotics: A review[J]. Food Hydrocolloids,2021,117:106688. doi: 10.1016/j.foodhyd.2021.106688
|
[89] |
BURGAIN J, GAIANI C, CAILLIEZ-GRIMAL C, et al. Encapsulation of Lactobacillus rhamnosus GG in microparticles: Influence of casein to whey protein ratio on bacterial survival during digestion[J]. Innovative Food Science & Emerging Technologies,2013,19:233−242.
|
[90] |
AKKURT S, LIU L S, TOMASULA P M. Electrospinning of edible, food-based polymers[M]. Florida: CRC Press, 2018.
|
[91] |
KYCIA K, CHLEBOWSKA-ŚMIGIEL A, SZYDŁOWSKA A, et al. Pullulan as a potential enhancer of Lactobacillus and Bifidobacterium viability in synbiotic low fat yoghurt and its sensory quality[J]. LWT,2020,128:109414. doi: 10.1016/j.lwt.2020.109414
|
[92] |
SHEN C, DENG Z, RAO J, et al. Characterization of glycosylated gelatin/pullulan nanofibers fabricated by multi-fluid mixing solution blow spinning[J]. International Journal of Biological Macromolecules,2022,214:512−521. doi: 10.1016/j.ijbiomac.2022.06.082
|
[93] |
GHALEHJOOGHI H D, TAJIK H, SHAHBAZI Y. Development and characterization of active packaging nanofiber mats based on gelatin-sodium alginate containing probiotic microorganisms to improve the shelf-life and safety quality of silver carp fillets[J]. International Journal of Food Microbiology,2023,384:109984. doi: 10.1016/j.ijfoodmicro.2022.109984
|
[94] |
AKKURT S, RENYE J, TOMASULA P M. Encapsulation of Lactobacillus rhamnosus GG in edible electrospun mats from calcium and sodium caseinates with pullulan blends[J]. JDS Communications,2022,3(6):381−386. doi: 10.3168/jdsc.2021-0173
|
[95] |
HASANKHAN S, TABIBIAZAR M, HOSSEINI S M, et al. Fabrication of curcumin-zein-ethyl cellulose composite nanoparticles using antisolvent co-precipitation method[J]. International Journal of Biological Macromolecules,2020,163:1538−1545. doi: 10.1016/j.ijbiomac.2020.08.045
|
[96] |
JIANG F, DU C, ZHAO N, et al. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers[J]. Food Chemistry,2022,369:130895. doi: 10.1016/j.foodchem.2021.130895
|
[97] |
HOSSEINI S F, ANSARI B, GHARSALLAOUI A. Polyelectrolytes-stabilized liposomes for efficient encapsulation of Lactobacillus rhamnosus and improvement of its survivability under adverse conditions[J]. Food Chemistry,2022,372:131358. doi: 10.1016/j.foodchem.2021.131358
|
[98] |
SOLANS C, IZQUIERDO P, NOLLA J, et al. Nano-emulsions[J]. Current Opinion in Colloid & Interface Science,2005,10(3):102−110.
|
[99] |
HOU X, SHENG J J. Properties, preparation, stability of nanoemulsions, their improving oil recovery mechanisms, and challenges for oil field applications–A critical review[J]. Geoenergy Science and Engineering,2023,221:211360. doi: 10.1016/j.geoen.2022.211360
|
[100] |
VAISHANAVI S, PREETHA R. Soy protein incorporated nanoemulsion for enhanced stability of probiotic (Lactobacillus delbrueckii subsp. bulgaricus) and its characterization[J]. Materials Today:Proceedings,2021,40:S148−S153. doi: 10.1016/j.matpr.2020.05.008
|
[101] |
MOGHADDAS KIA E, GHASEMPOUR Z, GHANBARI S, et al. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and microencapsulated in gellan-caseinate mixture[J]. British Food Journal,2018,120(7):1516−1528. doi: 10.1108/BFJ-12-2017-0668
|
[102] |
LI H, LIU T, YANG J, et al. Effect of a microencapsulated synbiotic product on microbiology, microstructure, textural and rheological properties of stirred yogurt[J]. LWT,2021,152:112302. doi: 10.1016/j.lwt.2021.112302
|
[103] |
EL KADRI H, LALOU S, MANTZOURIDOU F, et al. Utilisation of water-in-oil-water (W1/O/W2) double emulsion in a set-type yogurt model for the delivery of probiotic Lactobacillus paracasei[J]. Food Research International,2018,107:325−336. doi: 10.1016/j.foodres.2018.02.049
|
[104] |
ROLIM F R L, FREITAS NETO O C, OLIVEIRA M E G, et al. Cheeses as food matrixes for probiotics: In vitro and in vivo tests[J]. Trends in Food Science & Technology,2020,100:138−154.
|
[105] |
MOGHADDAS KIA E, ALIZADEH M, ESMAIILI M. Development and characterization of probiotic UF Feta cheese containing Lactobacillus paracasei microencapsulated by enzyme based gelation method[J]. J Food Sci Technol,2018,55(9):3657−3664. doi: 10.1007/s13197-018-3294-8
|
[106] |
LIU L, CHEN P, ZHAO W, et al. Effect of microencapsulation with the Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival rate of Lactobacillus rhamnosus in white brined cheese[J]. Food Control,2017,79:44−49. doi: 10.1016/j.foodcont.2017.03.016
|
[107] |
LILLO-PÉREZ S, GUERRA-VALLE M, ORELLANA-PALMA P, et al. Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers[J]. LWT,2021,151:112106. doi: 10.1016/j.lwt.2021.112106
|
[108] |
ISLAM M Z, TABASSUM S, HARUN-UR-RASHID M, et al. Development of probiotic beverage using whey and pineapple (Ananas comosus) juice: Sensory and physico-chemical properties and probiotic survivability during in-vitro gastrointestinal digestion[J]. Journal of Agriculture and Food Research,2021,4:100144. doi: 10.1016/j.jafr.2021.100144
|
[109] |
KRUNIĆ T Ž, BULATOVIĆ M L, OBRADOVIĆ N S, et al. Effect of immobilisation materials on viability and fermentation activity of dairy starter culture in whey-based substrate[J]. Journal of the Science of Food and Agriculture,2016,96(5):1723−1729. doi: 10.1002/jsfa.7278
|
[110] |
KRUNIĆ T Ž, RAKIN M B. Enriching alginate matrix used for probiotic encapsulation with whey protein concentrate or its trypsin-derived hydrolysate: Impact on antioxidant capacity and stability of fermented whey-based beverages[J]. Food Chemistry,2022,370:130931. doi: 10.1016/j.foodchem.2021.130931
|
[111] |
HERNÁNDEZ-BARRUETA T, MARTÍNEZ-BUSTOS F, CASTAÑO-TOSTADO E, et al. Encapsulation of probiotics in whey protein isolate and modified huauzontle's starch: An approach to avoid fermentation and stabilize polyphenol compounds in a ready-to-drink probiotic green tea[J]. LWT,2020,124:109131. doi: 10.1016/j.lwt.2020.109131
|
[112] |
OBRADOVIĆ N, VOLIĆ M, NEDOVIĆ V, et al. Microencapsulation of probiotic starter culture in protein–carbohydrate carriers using spray and freeze-drying processes: Implementation in whey-based beverages[J]. Journal of Food Engineering,2022,321:110948. doi: 10.1016/j.jfoodeng.2022.110948
|
[113] |
LE N T T, BACH L G, NGUYEN D C, et al. Evaluation of factors affecting antimicrobial activity of bacteriocin from lactobacillus plantarum microencapsulated in alginate-gelatin capsules and its application on pork meat as a bio-preservative[J]. Int J Environ Res Public Health,2019,16(6):1017. doi: 10.3390/ijerph16061017
|
[114] |
刘颖, 朱金铭. 一种载有益生菌的功能化可食性膜及其制备方法CN 115399481A[P]. 2022-11-29.
LIU Y, ZHU J. Functional edible film loaded with probiotics and preparation method thereof. China, 115399481A[P]. 2022-11-29.
|
1. |
肖雪,王金浩,邵俊花,范江平,葛长荣,肖智超. 超声辅助酶法优化鸡肉蛋白水解工艺. 食品研究与开发. 2023(02): 124-131 .
![]() | |
2. |
李自会,段晓杰,刘昆仑,布冠好,王亮,张顺棠,井金锋,任伟. 鸡骨架和鸡胸肉复合底物酶解工艺优化及产物呈味特性研究. 食品工业科技. 2023(15): 184-192 .
![]() | |
3. |
李自会,张顺棠,段晓杰,布冠好,刘昆仑,高立栋,井金峰. 酶解禽类蛋白制备呈味基料的研究进展. 中国调味品. 2022(11): 211-215 .
![]() | |
4. |
司翔宇,商焱,范君君,党亚丽. 即食香辣洋姜风味改良研究. 中国果菜. 2021(08): 34-38 .
![]() |