Citation: | YANG Xuan, LI Qin, RAO Lei, et al. Recent Advances in the Separation, Characterization, and Application of Starch Hierarchy[J]. Science and Technology of Food Industry, 2023, 44(19): 481−490. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010048. |
[1] |
REN F, WANG J W, XIE F W, et al. Applications of ionic liquids in starch chemistry: A review[J]. Green Chemistry,2020,22(7):2162−2183. doi: 10.1039/C9GC03738A
|
[2] |
CHI C D, LI X X, ZHANG Y P, et al. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid[J]. Food & Function,2017,8(2):720−730.
|
[3] |
BERTOFT E. Understanding starch structure: recent progress[J]. Agronomy-Basel,2017,7(3):56. doi: 10.3390/agronomy7030056
|
[4] |
XU H B, ZHOU J P, LIU X, et al. Methods for characterizing the structure of starch in relation to its applications: A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2021,30:1−8.
|
[5] |
BULEON A, COLONNA P, PLANCHOT V, et al. Starch granules: Structure and biosynthesis[J]. International Journal of Biological Macromolecules,1998,23(2):85−112. doi: 10.1016/S0141-8130(98)00040-3
|
[6] |
BHATT P, KUMAR V, GOEL R, et al. Structural modifications and strategies for native starch for applications in advanced drug delivery[J]. Biomed Research International,2022,2022:2188940.
|
[7] |
CHOI S H, KIM H Y, OH S M, et al. Infusion efficiency of sodium fluorescein into various starches[J]. Food Science and Biotechnology,2019,28(1):99−102. doi: 10.1007/s10068-018-0455-5
|
[8] |
WANG X Y, LIU S Y, AI Y F. Gelation mechanisms of granular and non-granular starches with variations in molecular structures[J]. Food Hydrocolloids,2022,129:107658. doi: 10.1016/j.foodhyd.2022.107658
|
[9] |
冯朵, 丁振, 曹盼盼, 等. 预处理辅助酶解制备多孔淀粉及其在食品领域中的应用[J]. 美食研究,2022,39(2):87−94. [FENG D, DING Z, CAO P P, et al. Porous starch prepared by pre-treatment assisted enzymatic hydrolysis and its application in food field[J]. Journal of Researches on Dietetic Science and Culture,2022,39(2):87−94.
FENG D, DING Z, CAO P P, et al. Porous starch prepared by pre-treatment assisted enzymatic hydrolysis and its application in food field[J]. Journal of Researches on Dietetic Science and Culture, 2022, 39(2): 87-94.
|
[10] |
HUANG J, WEI M, REN R, et al. Morphological changes of blocklets during the gelatinization process of tapioca starch[J]. Carbohydrate Polymers,2017,163:324−329. doi: 10.1016/j.carbpol.2017.01.083
|
[11] |
HUANG J, WEI N, LI H, et al. Outer shell, inner blocklets, and granule architecture of potato starch[J]. Carbohydrate Polymers,2014,103:355−358. doi: 10.1016/j.carbpol.2013.12.064
|
[12] |
马芸. 淀粉颗粒外壳的分离及其性质与结构研究[D]. 西安: 陕西科技大学, 2018
MA Y. Properties and structure of the outer shells separating from starch granules[D]. Xi'an: Shaanxi University of Science and Technology, 2018.
|
[13] |
陈治光. 不同加工条件下淀粉分子构象和次级相互作用力变化规律研究[D]. 西安: 陕西科技大学, 2021
CHEN Z G. Study on the change rules of starch molecular conformation and secondary interaction under different processing conditions[D] Xi'an: Shaanxi University of Science and Technology, 2021.
|
[14] |
李敏, 张倩芳, 栗红瑜, 等. 基于不同提取方法对藜麦淀粉性质的比较[J]. 食品研究与开发,2022,43(1):17−24. [LI M, ZHANG Q F, LI H Y, et al. Comparison between quinoa starches isolated using different extraction methods[J]. Food Research and Development,2022,43(1):17−24.
LI M, ZHANG Q F, LI H Y, et al. Comparison between quinoa starches isolated using different extraction methods[J]. Food Research and Development, 2022, 43(1): 17-24.
|
[15] |
张增江, 王竹, 朱俊超, 等. 板栗淀粉的提取工艺优化及其性质分析[J]. 现代食品科技,2022,38(7):225−231. [ZHANG Z J, WANG Z, ZHU J C, et a1. Optimization of extraction process for chestnut starches and analysis of their properties[J]. Modem Food Science and Technology,2022,38(7):225−231.
ZHANG Z J, WANG Z, ZHU J C, et a1. Optimization of extraction process for chestnut starches and analysis of their properties[J]. Modem Food Science and Technology, 2022, 38(7): 225-231.
|
[16] |
曹甜甜, 王思玉, 彭修春, 等. 鹰嘴豆淀粉提取工艺的研究[J]. 现代食品,2021(15):49−51, 55. [CAO T T, WANG S Y, PENG X C, et al. Study on extraction technology of chickpea starch[J]. Process Technology,2021(15):49−51, 55.
CAO T T, WANG S Y, PENG X C, et al. Study on extraction technology of chickpea starch[J]. Process Technology, 2021, (15): 49-51, 55.
|
[17] |
钟雪瑶, 王少曼, 张彦军, 等. 响应面法优化面包果淀粉的酶法提取工艺[J]. 食品工业科技,2020,41(21):139−144. [ZHONG X Y, WANG S M, ZHANG Y J, et a1. Optimization of enzymatic extraction technology of starch from breadfruit by response surface methodology[J]. Science and Technology of Food Industry,2020,41(21):139−144.
ZHONG X Y, WANG S M, ZHANG Y J, et a1. Optimization of enzymatic extraction technology of starch from breadfruit by response surface methodology[J]. Science and Technology of Food Industry, 2020, 41(21): 139-144.
|
[18] |
郭晓冬, 李颖. 小米淀粉提取方法的比较[J]. 中国粮油学报,2011,26(5):26−29. [GUO X D, LI Y. Comparative study on methods for extracting starch from millet[J]. Journal of the Chinese Cereals and Oils Association,2011,26(5):26−29.
GUO X D, LI Y. Comparative study on methods for extracting starch from millet[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(5): 26-29.
|
[19] |
ZHANG B, DHITAL S, FLANAGAN B M, et al. Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties[J]. Journal of Agricultural and Food Chemistry,2014,62(3):760−771. doi: 10.1021/jf404697v
|
[20] |
FANG C L, HUANG J R, PU H Y, et al. Cold-water solubility, oil-adsorption and enzymolysis properties of amorphous granular starches[J]. Food Hydrocolloids,2021,117:106669. doi: 10.1016/j.foodhyd.2021.106669
|
[21] |
PILLING E, SMITH A M. Growth ring formation in the starch granules of potato tubers[J]. Plant Physiology,2003,132(1):365−371. doi: 10.1104/pp.102.018044
|
[22] |
任瑞珍. 酶解法研究三种薯类淀粉的壳层和小体结构[D]. 西安: 陕西科技大学, 2015
REN R Z. Shells and blocklets of three tuber starches as indicated by enzymolysis approach[D] Xi'an: Shaanxi University of Science and Technology, 2015.
|
[23] |
ZHANG B, SELWAY N, SHELAT K J, et al. Tribology of swollen starch granule suspensions from maize and potato[J]. Carbohydrate Polymers,2017,155:128−135. doi: 10.1016/j.carbpol.2016.08.064
|
[24] |
王倩. 淀粉小体与分子结构关系的研究[D]. 西安: 陕西科技大学, 2018
WANG Q. The relationship between blocklets and molecular structure of starch[D] Xi'an: Shaanxi University of Science and Technology, 2018.
|
[25] |
方晨璐. 三种形状无定形淀粉的制备、特征性质及分子结构研究[D]. 西安: 陕西科技大学, 2020
FANG C L. Preparation, characteristic properties and molecular structures of three amorphous starches of different shapes[D] Xi'an: Shaanxi University of Science and Technology, 2020.
|
[26] |
陈德经, 罗敏, 苏文. 西洋参直链淀粉与支链淀粉的分离纯化与含量检测[J]. 保鲜与加工,2020,20(3):146−149. [CHEN D J, LUO M, SU W. The separation, purification and determination of the amylose and amylopectin from American ginseng[J]. Storage and Process,2020,20(3):146−149.
CHEN D J, LUO M, SU W. The separation, purification and determination of the amylose and amylopectin from American ginseng[J]. Storage and Process, 2020, 20(3): 146-149.
|
[27] |
钟雨越. 玉米直链淀粉的提取与高直链淀粉膜的制备[D]. 杨凌: 西北农林科技大学, 2018.
ZHONG Y Y. Isolation of amylose from corn and preparation of high-amylose corn starch based films[D]. Yangling: Northwest A&F University, 2018.
|
[28] |
LEMOS P V F, BARBOSA L S, RAMOS I G, et al. Characterization of amylose and amylopectin fractions separated from potato, banana, corn, and cassava starches[J]. International Journal of Biological Macromolecules,2019,132:32−42. doi: 10.1016/j.ijbiomac.2019.03.086
|
[29] |
严青. 不完全糊化法研究淀粉颗粒的外壳和小体结构[D]. 西安: 陕西科技大学, 2015
YAN Q. Outer shells and blocklets of starch granules as indicated by insufficient gelatinization[D] Xi'an: Shaanxi University of Science and Technology, 2015.
|
[30] |
魏毛毛. 淀粉糊化过程中小体形态变化和不完全糊化颗粒性质研究[D]. 西安: 陕西科技大学, 2017
WEI M M. Morphological changes of blocklets during the gelatinization process and the properties of insufficient gelatinization starch granules[D] Xi'an: Shaanxi University of Science and Technology, 2017.
|
[31] |
刘洁, 刘亚伟. 直链淀粉与支链淀粉的分离方法[J]. 粮食与饲料工业,2005(2):15−17. [LIU J, LIU Y W. Methods of separating amylose from amylopetin[J]. Cereal and Feed Industry,2005(2):15−17.
LIU J, LIU Y W. Methods of separating amylose from amylopetin[J]. Cereal and Feed Industry. 2005, (2): 15-17.
|
[32] |
黄强, 罗发兴, 杨连生. 淀粉颗粒结构的研究进展[J]. 高分子材料科学与工程,2004,20(5):19−23. [HUANG Q, LUO F X, YANG L S. Progress of research on the starch granules[J]. Polymer Materials Science and Engineering,2004,20(5):19−23.
HUANG Q, LUO F X, YANG L S. Progress of research on the starch granules[J]. Polymer Materials Science and Engineering, 2004, 20(5): 19-23.
|
[33] |
BLENNOW A, HANSEN M, SCHULZ A, et al. The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy[J]. Journal of Structural Biology,2003,143(3):229−241. doi: 10.1016/j.jsb.2003.08.009
|
[34] |
CHEN L, MA R R, ZHANG Z P, et al. Comprehensive investigation and comparison of surface microstructure of fractionated potato starches[J]. Food Hydrocolloids,2019,89:11−19. doi: 10.1016/j.foodhyd.2018.10.017
|
[35] |
MA M T, XU Z K, CHEN X J, et al. Architecture of outer shell and inner blocklets of rice starch granule is related to starch granule-associated proteins[J]. Food Hydrocolloids,2022,127:107551. doi: 10.1016/j.foodhyd.2022.107551
|
[36] |
LU F, ZHU X F, TAO H, et al. Controlling starch surface characteristics - Impact on dough formation in a reconstituted dough system[J]. Lwt-Food Science and Technology,2022,163:113591. doi: 10.1016/j.lwt.2022.113591
|
[37] |
蒲华寅. 等离子体作用对淀粉结构及性质影响的研究[D]. 广州: 华南理工大学, 2013
PU H Y. Effects of plasma on structure and properties of starch[D]. Guangzhou: South China University of Technology, 2013.
|
[38] |
SUJKA M, JAMROZ J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour[J]. Food Hydrocolloids,2013,31(2):413−419. doi: 10.1016/j.foodhyd.2012.11.027
|
[39] |
PUTAUX J L, BULEON A, CHANZY H. Network formation in dilute amylose and amylopectin studied by TEM[J]. Macromolecules,2000,33(17):6416−6422. doi: 10.1021/ma000242j
|
[40] |
WARREN F J, GIDLEY M J, FLANAGAN B M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study[J]. Carbohydrate Polymers,2016,139:35−42. doi: 10.1016/j.carbpol.2015.11.066
|
[41] |
WANG S J, COPELAND L. Effect of alkali treatment on structure and function of pea starch granules[J]. Food Chemistry,2012,135(3):1635−1642. doi: 10.1016/j.foodchem.2012.06.003
|
[42] |
王超. 高静压糊化大米淀粉结构及机制研究[D]. 北京: 中国农业大学, 2020
WANG C. Study on the structure and mechanism of high static pressure gelatinized rice starch[D]. Beijing: China Agricultural University, 2020.
|
[43] |
ZHU Y C, CUI B, YUAN C, et al. A new separation approach of amylose fraction from gelatinized high amylose corn starch[J]. Food Hydrocolloids,2022,131:107759. doi: 10.1016/j.foodhyd.2022.107759
|
[44] |
WANG S Q, WU T H, CUI W J, et al. Structure and in vitro digestibility on complex of corn starch with soy isoflavone[J]. Food Science & Nutrition,2020,8(11):6061−6068.
|
[45] |
WANG Y Y, ZHAN J L, LU H, et al. Amylopectin crystal seeds: Characterization and their effect on amylopectin retrogradation[J]. Food Hydrocolloids,2021,111:106409. doi: 10.1016/j.foodhyd.2020.106409
|
[46] |
SUN B H, TIAN Y Q, CHEN L, et al. Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin[J]. Food Hydrocolloids,2018,77:911−920. doi: 10.1016/j.foodhyd.2017.11.038
|
[47] |
LU H, TIAN Y Q, MA R R. Assessment of order of helical structures of retrograded starch by Raman spectroscopy[J]. Food Hydrocolloids,2023,134:108064. doi: 10.1016/j.foodhyd.2022.108064
|
[48] |
GUO Z B, JIA X Z, LIN X, et al. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure[J]. Food and Chemical Toxicology,2019,128:81−88. doi: 10.1016/j.fct.2019.03.052
|
[49] |
ZHENG Y X, OU Y J, ZHANG C, et al. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch[J]. International Journal of Biological Macromolecules,2021,175:49−57. doi: 10.1016/j.ijbiomac.2021.01.175
|
[50] |
HUANG S Q, CHAO C, YU J L, et al. New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch[J]. Food Hydrocolloids,2021,120:106921. doi: 10.1016/j.foodhyd.2021.106921
|
[51] |
MAZEAU K, NISHIYAMA Y, OGAWA Y, et al. Crystal and molecular structure of V-amylose complexed with butan-1-ol[J]. Polymer,2022,243:124651. doi: 10.1016/j.polymer.2022.124651
|
[52] |
XU J C, KUANG Q R, WANG K, et al. Insights into molecular structure and digestion rate of oat starch[J]. Food Chemistry,2017,220:25−30. doi: 10.1016/j.foodchem.2016.09.191
|
[53] |
LEE S, LEE J H, CHUNG H J. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing[J]. Carbohydrate Polymers,2017,169:33−40. doi: 10.1016/j.carbpol.2017.03.091
|
[54] |
LOPEZ-RUBIO A, FLANAGAN B M, GILBERT E P, et al. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study[J]. Biopolymers,2008,89(9):761−768. doi: 10.1002/bip.21005
|
[55] |
LACERDA L D, LEITE D C, DA SILVEIRA N P. Relation-ships between enzymatic hydrolysis conditions and properties of rice porous starches[J]. Journal of Cereal Science,2019,89:102819.
|
[56] |
施晓丹, 汪少芸. 多孔淀粉的制备与应用研究进展[J]. 中国粮油学报,2021,36(2):187−195. [SHI S D, WANG S Y. Research progress in preparation and application of porous starch[J]. Journal of the Chinese Cereals and Oils Association,2021,36(2):187−195.
SHI S D, WANG S Y. Research progress in preparation and application of porous starch[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(2): 187-195.
|
[57] |
孟鑫, 刘妍, 田园, 等. 改性淀粉胶粘剂的研究进展[J]. 化学与粘合,2022,44(3):248−52. [MENG X, LIU Y, TIAN Y, et al. Research progress in modified starch adhesives[J]. Chemistry and Adhesion,2022,44(3):248−52.
MENG X, LIU Y, TIAN Y, et al. Research Progress in Modified Starch Adhesives[J]. Chemistry and Adhesion, 2022, 44(3): 248-52.
|
[58] |
闫倩倩, 孔青, 续飞, 等. 改性淀粉基可食性膜的制备及性能研究[J]. 中国粮油学报,2021,36(2):41−46. [YAN Q Q, KONG Q, XU F, et al. Preparation and properties of edible films based on modified starch[J]. Journal of the Chinese Cereals and Oils Association,2021,36(2):41−46.
YAN Q Q, KONG Q, XU F, et al. Preparation and properties of edible films based on modified starch [j]. journal of the chinese cereals and oils association, 2021, 36(2): 41-46.
|
[59] |
刘华玲, 史苗苗, 周亚萍, 等. 茶多酚/直链淀粉复合物的制备及表征[J]. 食品工业科技,2019,40(2):113−118. [LIU H L, SHI M M, ZHOU Y P, et al. Preparation and characterization of tea polyphenols/amylose complexes[J]. Science and Technology of Food Industry,2019,40(2):113−118.
LIU H L, SHI M M, ZHOU Y P, et al. Preparation and characterization of tea polyphenols/amylose complexes[J]. Science and Technology of Food Industry, 2019, 40(2): 113-118.
|
[60] |
朱立斌, 徐飞, 李博, 等. 支链聚合度对菠萝蜜支链淀粉与月桂酸复合物理化特性的影响[J]. 食品工业科技,2021,42(21):65−72. [ZHU L B, XU F, LI B, et al. Effect of polymerization degree of amylopectin on the physical and chemical properties of complexes of Jackfruit amylopectin and lauric acid[J]. Science and Technology of Food Industry,2021,42(21):65−72.
ZHU L B, XU F, LI B, et al. Effect of polymerization degree of amylopectin on the physical and chemical properties of complexes of Jackfruit amylopectin and lauric acid[J]. Science and Technology of Food Industry, 2021, 42(21): 65-72.
|
[61] |
WULFF G, AVGENAKI G, GUZMANN M S P. Molecular encapsulation of flavours as helical inclusion complexes of amylose[J]. Journal of Cereal Science,2005,41(3):239−249. doi: 10.1016/j.jcs.2004.06.002
|
1. |
李师行,徐洪涛,李笑,孙美玲,杨鑫焱,项鹏宇,杨智浩,满朝新,姜毓君. A1/A2 β-酪蛋白基因型的鉴定及其消化性能的比较. 食品工业科技. 2025(05): 160-167 .
![]() | |
2. |
唐琳琳,赵羚暄,秦爱荣,多杰仁青,李红娟,于景华. 不同结构酪蛋白深度水解物的致敏性分析. 粮食与油脂. 2024(12): 148-153 .
![]() |