YANG Xuan, LI Qin, RAO Lei, et al. Recent Advances in the Separation, Characterization, and Application of Starch Hierarchy[J]. Science and Technology of Food Industry, 2023, 44(19): 481−490. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010048.
Citation: YANG Xuan, LI Qin, RAO Lei, et al. Recent Advances in the Separation, Characterization, and Application of Starch Hierarchy[J]. Science and Technology of Food Industry, 2023, 44(19): 481−490. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010048.

Recent Advances in the Separation, Characterization, and Application of Starch Hierarchy

More Information
  • Received Date: January 09, 2023
  • Available Online: August 04, 2023
  • Starch is a major component of the human diet and has several hierarchies including granule, shell, blocklet, amylose and amylopectin, which can be used as the raw materials in food processing. In order to be applied in a suitable range, this involves the selection of separation methods and the accurate characterization of the structural properties of each starch hierarchy. Therefore, this paper analyzes the separation and characterization methods for each starch hierarchy, introduces their different applications, and thus provides some references for the development and utilization of starch resources.
  • [1]
    REN F, WANG J W, XIE F W, et al. Applications of ionic liquids in starch chemistry: A review[J]. Green Chemistry,2020,22(7):2162−2183. doi: 10.1039/C9GC03738A
    [2]
    CHI C D, LI X X, ZHANG Y P, et al. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid[J]. Food & Function,2017,8(2):720−730.
    [3]
    BERTOFT E. Understanding starch structure: recent progress[J]. Agronomy-Basel,2017,7(3):56. doi: 10.3390/agronomy7030056
    [4]
    XU H B, ZHOU J P, LIU X, et al. Methods for characterizing the structure of starch in relation to its applications: A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2021,30:1−8.
    [5]
    BULEON A, COLONNA P, PLANCHOT V, et al. Starch granules: Structure and biosynthesis[J]. International Journal of Biological Macromolecules,1998,23(2):85−112. doi: 10.1016/S0141-8130(98)00040-3
    [6]
    BHATT P, KUMAR V, GOEL R, et al. Structural modifications and strategies for native starch for applications in advanced drug delivery[J]. Biomed Research International,2022,2022:2188940.
    [7]
    CHOI S H, KIM H Y, OH S M, et al. Infusion efficiency of sodium fluorescein into various starches[J]. Food Science and Biotechnology,2019,28(1):99−102. doi: 10.1007/s10068-018-0455-5
    [8]
    WANG X Y, LIU S Y, AI Y F. Gelation mechanisms of granular and non-granular starches with variations in molecular structures[J]. Food Hydrocolloids,2022,129:107658. doi: 10.1016/j.foodhyd.2022.107658
    [9]
    冯朵, 丁振, 曹盼盼, 等. 预处理辅助酶解制备多孔淀粉及其在食品领域中的应用[J]. 美食研究,2022,39(2):87−94. [FENG D, DING Z, CAO P P, et al. Porous starch prepared by pre-treatment assisted enzymatic hydrolysis and its application in food field[J]. Journal of Researches on Dietetic Science and Culture,2022,39(2):87−94.

    FENG D, DING Z, CAO P P, et al. Porous starch prepared by pre-treatment assisted enzymatic hydrolysis and its application in food field[J]. Journal of Researches on Dietetic Science and Culture, 2022, 39(2): 87-94.
    [10]
    HUANG J, WEI M, REN R, et al. Morphological changes of blocklets during the gelatinization process of tapioca starch[J]. Carbohydrate Polymers,2017,163:324−329. doi: 10.1016/j.carbpol.2017.01.083
    [11]
    HUANG J, WEI N, LI H, et al. Outer shell, inner blocklets, and granule architecture of potato starch[J]. Carbohydrate Polymers,2014,103:355−358. doi: 10.1016/j.carbpol.2013.12.064
    [12]
    马芸. 淀粉颗粒外壳的分离及其性质与结构研究[D]. 西安: 陕西科技大学, 2018

    MA Y. Properties and structure of the outer shells separating from starch granules[D]. Xi'an: Shaanxi University of Science and Technology, 2018.
    [13]
    陈治光. 不同加工条件下淀粉分子构象和次级相互作用力变化规律研究[D]. 西安: 陕西科技大学, 2021

    CHEN Z G. Study on the change rules of starch molecular conformation and secondary interaction under different processing conditions[D] Xi'an: Shaanxi University of Science and Technology, 2021.
    [14]
    李敏, 张倩芳, 栗红瑜, 等. 基于不同提取方法对藜麦淀粉性质的比较[J]. 食品研究与开发,2022,43(1):17−24. [LI M, ZHANG Q F, LI H Y, et al. Comparison between quinoa starches isolated using different extraction methods[J]. Food Research and Development,2022,43(1):17−24.

    LI M, ZHANG Q F, LI H Y, et al. Comparison between quinoa starches isolated using different extraction methods[J]. Food Research and Development, 2022, 43(1): 17-24.
    [15]
    张增江, 王竹, 朱俊超, 等. 板栗淀粉的提取工艺优化及其性质分析[J]. 现代食品科技,2022,38(7):225−231. [ZHANG Z J, WANG Z, ZHU J C, et a1. Optimization of extraction process for chestnut starches and analysis of their properties[J]. Modem Food Science and Technology,2022,38(7):225−231.

    ZHANG Z J, WANG Z, ZHU J C, et a1. Optimization of extraction process for chestnut starches and analysis of their properties[J]. Modem Food Science and Technology, 2022, 38(7): 225-231.
    [16]
    曹甜甜, 王思玉, 彭修春, 等. 鹰嘴豆淀粉提取工艺的研究[J]. 现代食品,2021(15):49−51, 55. [CAO T T, WANG S Y, PENG X C, et al. Study on extraction technology of chickpea starch[J]. Process Technology,2021(15):49−51, 55.

    CAO T T, WANG S Y, PENG X C, et al. Study on extraction technology of chickpea starch[J]. Process Technology, 2021, (15): 49-51, 55.
    [17]
    钟雪瑶, 王少曼, 张彦军, 等. 响应面法优化面包果淀粉的酶法提取工艺[J]. 食品工业科技,2020,41(21):139−144. [ZHONG X Y, WANG S M, ZHANG Y J, et a1. Optimization of enzymatic extraction technology of starch from breadfruit by response surface methodology[J]. Science and Technology of Food Industry,2020,41(21):139−144.

    ZHONG X Y, WANG S M, ZHANG Y J, et a1. Optimization of enzymatic extraction technology of starch from breadfruit by response surface methodology[J]. Science and Technology of Food Industry, 2020, 41(21): 139-144.
    [18]
    郭晓冬, 李颖. 小米淀粉提取方法的比较[J]. 中国粮油学报,2011,26(5):26−29. [GUO X D, LI Y. Comparative study on methods for extracting starch from millet[J]. Journal of the Chinese Cereals and Oils Association,2011,26(5):26−29.

    GUO X D, LI Y. Comparative study on methods for extracting starch from millet[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(5): 26-29.
    [19]
    ZHANG B, DHITAL S, FLANAGAN B M, et al. Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties[J]. Journal of Agricultural and Food Chemistry,2014,62(3):760−771. doi: 10.1021/jf404697v
    [20]
    FANG C L, HUANG J R, PU H Y, et al. Cold-water solubility, oil-adsorption and enzymolysis properties of amorphous granular starches[J]. Food Hydrocolloids,2021,117:106669. doi: 10.1016/j.foodhyd.2021.106669
    [21]
    PILLING E, SMITH A M. Growth ring formation in the starch granules of potato tubers[J]. Plant Physiology,2003,132(1):365−371. doi: 10.1104/pp.102.018044
    [22]
    任瑞珍. 酶解法研究三种薯类淀粉的壳层和小体结构[D]. 西安: 陕西科技大学, 2015

    REN R Z. Shells and blocklets of three tuber starches as indicated by enzymolysis approach[D] Xi'an: Shaanxi University of Science and Technology, 2015.
    [23]
    ZHANG B, SELWAY N, SHELAT K J, et al. Tribology of swollen starch granule suspensions from maize and potato[J]. Carbohydrate Polymers,2017,155:128−135. doi: 10.1016/j.carbpol.2016.08.064
    [24]
    王倩. 淀粉小体与分子结构关系的研究[D]. 西安: 陕西科技大学, 2018

    WANG Q. The relationship between blocklets and molecular structure of starch[D] Xi'an: Shaanxi University of Science and Technology, 2018.
    [25]
    方晨璐. 三种形状无定形淀粉的制备、特征性质及分子结构研究[D]. 西安: 陕西科技大学, 2020

    FANG C L. Preparation, characteristic properties and molecular structures of three amorphous starches of different shapes[D] Xi'an: Shaanxi University of Science and Technology, 2020.
    [26]
    陈德经, 罗敏, 苏文. 西洋参直链淀粉与支链淀粉的分离纯化与含量检测[J]. 保鲜与加工,2020,20(3):146−149. [CHEN D J, LUO M, SU W. The separation, purification and determination of the amylose and amylopectin from American ginseng[J]. Storage and Process,2020,20(3):146−149.

    CHEN D J, LUO M, SU W. The separation, purification and determination of the amylose and amylopectin from American ginseng[J]. Storage and Process, 2020, 20(3): 146-149.
    [27]
    钟雨越. 玉米直链淀粉的提取与高直链淀粉膜的制备[D]. 杨凌: 西北农林科技大学, 2018.

    ZHONG Y Y. Isolation of amylose from corn and preparation of high-amylose corn starch based films[D]. Yangling: Northwest A&F University, 2018.
    [28]
    LEMOS P V F, BARBOSA L S, RAMOS I G, et al. Characterization of amylose and amylopectin fractions separated from potato, banana, corn, and cassava starches[J]. International Journal of Biological Macromolecules,2019,132:32−42. doi: 10.1016/j.ijbiomac.2019.03.086
    [29]
    严青. 不完全糊化法研究淀粉颗粒的外壳和小体结构[D]. 西安: 陕西科技大学, 2015

    YAN Q. Outer shells and blocklets of starch granules as indicated by insufficient gelatinization[D] Xi'an: Shaanxi University of Science and Technology, 2015.
    [30]
    魏毛毛. 淀粉糊化过程中小体形态变化和不完全糊化颗粒性质研究[D]. 西安: 陕西科技大学, 2017

    WEI M M. Morphological changes of blocklets during the gelatinization process and the properties of insufficient gelatinization starch granules[D] Xi'an: Shaanxi University of Science and Technology, 2017.
    [31]
    刘洁, 刘亚伟. 直链淀粉与支链淀粉的分离方法[J]. 粮食与饲料工业,2005(2):15−17. [LIU J, LIU Y W. Methods of separating amylose from amylopetin[J]. Cereal and Feed Industry,2005(2):15−17.

    LIU J, LIU Y W. Methods of separating amylose from amylopetin[J]. Cereal and Feed Industry. 2005, (2): 15-17.
    [32]
    黄强, 罗发兴, 杨连生. 淀粉颗粒结构的研究进展[J]. 高分子材料科学与工程,2004,20(5):19−23. [HUANG Q, LUO F X, YANG L S. Progress of research on the starch granules[J]. Polymer Materials Science and Engineering,2004,20(5):19−23.

    HUANG Q, LUO F X, YANG L S. Progress of research on the starch granules[J]. Polymer Materials Science and Engineering, 2004, 20(5): 19-23.
    [33]
    BLENNOW A, HANSEN M, SCHULZ A, et al. The molecular deposition of transgenically modified starch in the starch granule as imaged by functional microscopy[J]. Journal of Structural Biology,2003,143(3):229−241. doi: 10.1016/j.jsb.2003.08.009
    [34]
    CHEN L, MA R R, ZHANG Z P, et al. Comprehensive investigation and comparison of surface microstructure of fractionated potato starches[J]. Food Hydrocolloids,2019,89:11−19. doi: 10.1016/j.foodhyd.2018.10.017
    [35]
    MA M T, XU Z K, CHEN X J, et al. Architecture of outer shell and inner blocklets of rice starch granule is related to starch granule-associated proteins[J]. Food Hydrocolloids,2022,127:107551. doi: 10.1016/j.foodhyd.2022.107551
    [36]
    LU F, ZHU X F, TAO H, et al. Controlling starch surface characteristics - Impact on dough formation in a reconstituted dough system[J]. Lwt-Food Science and Technology,2022,163:113591. doi: 10.1016/j.lwt.2022.113591
    [37]
    蒲华寅. 等离子体作用对淀粉结构及性质影响的研究[D]. 广州: 华南理工大学, 2013

    PU H Y. Effects of plasma on structure and properties of starch[D]. Guangzhou: South China University of Technology, 2013.
    [38]
    SUJKA M, JAMROZ J. Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour[J]. Food Hydrocolloids,2013,31(2):413−419. doi: 10.1016/j.foodhyd.2012.11.027
    [39]
    PUTAUX J L, BULEON A, CHANZY H. Network formation in dilute amylose and amylopectin studied by TEM[J]. Macromolecules,2000,33(17):6416−6422. doi: 10.1021/ma000242j
    [40]
    WARREN F J, GIDLEY M J, FLANAGAN B M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study[J]. Carbohydrate Polymers,2016,139:35−42. doi: 10.1016/j.carbpol.2015.11.066
    [41]
    WANG S J, COPELAND L. Effect of alkali treatment on structure and function of pea starch granules[J]. Food Chemistry,2012,135(3):1635−1642. doi: 10.1016/j.foodchem.2012.06.003
    [42]
    王超. 高静压糊化大米淀粉结构及机制研究[D]. 北京: 中国农业大学, 2020

    WANG C. Study on the structure and mechanism of high static pressure gelatinized rice starch[D]. Beijing: China Agricultural University, 2020.
    [43]
    ZHU Y C, CUI B, YUAN C, et al. A new separation approach of amylose fraction from gelatinized high amylose corn starch[J]. Food Hydrocolloids,2022,131:107759. doi: 10.1016/j.foodhyd.2022.107759
    [44]
    WANG S Q, WU T H, CUI W J, et al. Structure and in vitro digestibility on complex of corn starch with soy isoflavone[J]. Food Science & Nutrition,2020,8(11):6061−6068.
    [45]
    WANG Y Y, ZHAN J L, LU H, et al. Amylopectin crystal seeds: Characterization and their effect on amylopectin retrogradation[J]. Food Hydrocolloids,2021,111:106409. doi: 10.1016/j.foodhyd.2020.106409
    [46]
    SUN B H, TIAN Y Q, CHEN L, et al. Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin[J]. Food Hydrocolloids,2018,77:911−920. doi: 10.1016/j.foodhyd.2017.11.038
    [47]
    LU H, TIAN Y Q, MA R R. Assessment of order of helical structures of retrograded starch by Raman spectroscopy[J]. Food Hydrocolloids,2023,134:108064. doi: 10.1016/j.foodhyd.2022.108064
    [48]
    GUO Z B, JIA X Z, LIN X, et al. Insight into the formation, structure and digestibility of lotus seed amylose-fatty acid complexes prepared by high hydrostatic pressure[J]. Food and Chemical Toxicology,2019,128:81−88. doi: 10.1016/j.fct.2019.03.052
    [49]
    ZHENG Y X, OU Y J, ZHANG C, et al. The impact of various exogenous type starch on the structural properties and dispersion stability of autoclaved lotus seed starch[J]. International Journal of Biological Macromolecules,2021,175:49−57. doi: 10.1016/j.ijbiomac.2021.01.175
    [50]
    HUANG S Q, CHAO C, YU J L, et al. New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch[J]. Food Hydrocolloids,2021,120:106921. doi: 10.1016/j.foodhyd.2021.106921
    [51]
    MAZEAU K, NISHIYAMA Y, OGAWA Y, et al. Crystal and molecular structure of V-amylose complexed with butan-1-ol[J]. Polymer,2022,243:124651. doi: 10.1016/j.polymer.2022.124651
    [52]
    XU J C, KUANG Q R, WANG K, et al. Insights into molecular structure and digestion rate of oat starch[J]. Food Chemistry,2017,220:25−30. doi: 10.1016/j.foodchem.2016.09.191
    [53]
    LEE S, LEE J H, CHUNG H J. Impact of diverse cultivars on molecular and crystalline structures of rice starch for food processing[J]. Carbohydrate Polymers,2017,169:33−40. doi: 10.1016/j.carbpol.2017.03.091
    [54]
    LOPEZ-RUBIO A, FLANAGAN B M, GILBERT E P, et al. A novel approach for calculating starch crystallinity and its correlation with double helix content: A combined XRD and NMR study[J]. Biopolymers,2008,89(9):761−768. doi: 10.1002/bip.21005
    [55]
    LACERDA L D, LEITE D C, DA SILVEIRA N P. Relation-ships between enzymatic hydrolysis conditions and properties of rice porous starches[J]. Journal of Cereal Science,2019,89:102819.
    [56]
    施晓丹, 汪少芸. 多孔淀粉的制备与应用研究进展[J]. 中国粮油学报,2021,36(2):187−195. [SHI S D, WANG S Y. Research progress in preparation and application of porous starch[J]. Journal of the Chinese Cereals and Oils Association,2021,36(2):187−195.

    SHI S D, WANG S Y. Research progress in preparation and application of porous starch[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(2): 187-195.
    [57]
    孟鑫, 刘妍, 田园, 等. 改性淀粉胶粘剂的研究进展[J]. 化学与粘合,2022,44(3):248−52. [MENG X, LIU Y, TIAN Y, et al. Research progress in modified starch adhesives[J]. Chemistry and Adhesion,2022,44(3):248−52.

    MENG X, LIU Y, TIAN Y, et al. Research Progress in Modified Starch Adhesives[J]. Chemistry and Adhesion, 2022, 44(3): 248-52.
    [58]
    闫倩倩, 孔青, 续飞, 等. 改性淀粉基可食性膜的制备及性能研究[J]. 中国粮油学报,2021,36(2):41−46. [YAN Q Q, KONG Q, XU F, et al. Preparation and properties of edible films based on modified starch[J]. Journal of the Chinese Cereals and Oils Association,2021,36(2):41−46.

    YAN Q Q, KONG Q, XU F, et al. Preparation and properties of edible films based on modified starch [j]. journal of the chinese cereals and oils association, 2021, 36(2): 41-46.
    [59]
    刘华玲, 史苗苗, 周亚萍, 等. 茶多酚/直链淀粉复合物的制备及表征[J]. 食品工业科技,2019,40(2):113−118. [LIU H L, SHI M M, ZHOU Y P, et al. Preparation and characterization of tea polyphenols/amylose complexes[J]. Science and Technology of Food Industry,2019,40(2):113−118.

    LIU H L, SHI M M, ZHOU Y P, et al. Preparation and characterization of tea polyphenols/amylose complexes[J]. Science and Technology of Food Industry, 2019, 40(2): 113-118.
    [60]
    朱立斌, 徐飞, 李博, 等. 支链聚合度对菠萝蜜支链淀粉与月桂酸复合物理化特性的影响[J]. 食品工业科技,2021,42(21):65−72. [ZHU L B, XU F, LI B, et al. Effect of polymerization degree of amylopectin on the physical and chemical properties of complexes of Jackfruit amylopectin and lauric acid[J]. Science and Technology of Food Industry,2021,42(21):65−72.

    ZHU L B, XU F, LI B, et al. Effect of polymerization degree of amylopectin on the physical and chemical properties of complexes of Jackfruit amylopectin and lauric acid[J]. Science and Technology of Food Industry, 2021, 42(21): 65-72.
    [61]
    WULFF G, AVGENAKI G, GUZMANN M S P. Molecular encapsulation of flavours as helical inclusion complexes of amylose[J]. Journal of Cereal Science,2005,41(3):239−249. doi: 10.1016/j.jcs.2004.06.002
  • Cited by

    Periodical cited type(2)

    1. 李师行,徐洪涛,李笑,孙美玲,杨鑫焱,项鹏宇,杨智浩,满朝新,姜毓君. A1/A2 β-酪蛋白基因型的鉴定及其消化性能的比较. 食品工业科技. 2025(05): 160-167 . 本站查看
    2. 唐琳琳,赵羚暄,秦爱荣,多杰仁青,李红娟,于景华. 不同结构酪蛋白深度水解物的致敏性分析. 粮食与油脂. 2024(12): 148-153 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (543) PDF downloads (54) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return