LU Ziyang, YU Hongda, ZHENG Jingshao, et al. Optimization of Mixed Fermentation Process of Purple Rice Flour and Its Nutritional Improvement[J]. Science and Technology of Food Industry, 2023, 44(19): 252−261. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120222.
Citation: LU Ziyang, YU Hongda, ZHENG Jingshao, et al. Optimization of Mixed Fermentation Process of Purple Rice Flour and Its Nutritional Improvement[J]. Science and Technology of Food Industry, 2023, 44(19): 252−261. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120222.

Optimization of Mixed Fermentation Process of Purple Rice Flour and Its Nutritional Improvement

More Information
  • Received Date: December 28, 2022
  • Available Online: July 21, 2023
  • In order to optimize the nutritional quality of infant supplementary food, purple rice, the raw material used in this paper, was fermented by Rhizopus oryzae and Lactobacillus plantarum in the way of mixed fermentation, and subsequently extruded before it was produced as an instant infant purple rice flour. Based on reducing sugar content, anthocyanin content, sensory evaluation and titratable acidity, the conditions of the purple rice flour mixed fermentation process were optimized. Results showed that, the optimum technological parameters of mixed fermentation of purple rice noodles were 8:1 g/mL inoculation proportion (Rhizopus oryzae:Lactobacillus plantarum), 0.8% inoculation dose, 1:0.8 g/mL solid-liquid ratio, 12 h fermentation time, and 31 ℃ fermentation temperature. Compared with the unfermented purple rice flour as a control, the starch digestibility in vitro of the fermented flour increased from 50.27% to 62.37%, the free phenol content increased from 204.46 mg GAE/100 g DW to 231.44 mg GAE/100 g DW, and phytic acid degraded 25.64%. After fermentation and extruded, the starch digestibility in vitro of the infant purple rice flour reached 84.39%, the free phenol content was 192.73 mg GAE/100 g DW, and the phytic acid degradation rate was 35.58%. The results indicated that fermentation significantly optimized the starch digestibility and phenolic composition of the purple rice flour, and reduced the content of anti-nutrition factor. In summary, the present study provides technical reference for the development of purple rice infant supplementary food with high nutritional value.
  • [1]
    孟刚. 米粉类辅食占市场主导地位[N]. 北京: 中国消费者报, 2022-03-31(3)

    MENG G. Rice flour complementary foods dominate the market[N]. Beijing: China Consumer News, 2022-03-31(3).
    [2]
    KHOO H E, AZLAN A, TANG S T, et al. Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits[J]. Food Nutr Res,2017,61(1):1361779. doi: 10.1080/16546628.2017.1361779
    [3]
    KONG S, LEE J. Antioxidants in milling fractions of black rice cultivars[J]. Food Chemistry,2010,120(1):278−281. doi: 10.1016/j.foodchem.2009.09.089
    [4]
    刘梅森, 林汉卿, 高丽霄, 等. 婴幼儿营养米粉生产中辅料对酶解工艺的影响[J]. 食品工业科技,2015,36(3):195−198. [LIU M S, LIN H Q, GAO L X, et al. Effect of production auxiliary materials of infant rice formula powder on enzymolysis processing[J]. Science and Technology of Food Industry,2015,36(3):195−198.

    LIU M S, LIN H Q, GAO L X, et al. Effect of production auxiliary materials of infant rice formula powder on enzymolysis processing[J]. Science and Technology of Food Industry, 2015, 36(3): 195-198.
    [5]
    袁长梅, 贺晓云, 马丽艳, 等. 植酸及其检测方法研究进展[J]. 食品工业,2021,42(4):396−400. [YUAN C M, HE X Y, MA L Y, et al. Research progress of phytic acid and its detection methods[J]. Food Industry,2021,42(4):396−400.

    YUAN C M, HE X Y, MA L Y, et al. Research progress of phytic acid and its detection methods[J]. Food Industry, 2021, 42(4): 396-400.
    [6]
    PONTOPPIDAN K, PETTERSSON D, SANDBERG A. Interaction of phytate with protein and minerals in a soybean-maize meal blend depends on pH and calcium addition[J]. Journal of the Science of Food and Agriculture,2007,87(10):1886−1892. doi: 10.1002/jsfa.2917
    [7]
    AMBROSINI G L, MACKERRAS D, DE KLERK N H, et al. Comparison of an Australian food-frequency questionnaire with diet records: implications for nutrition surveillance[J]. Public Health Nutrition,2003,6(4):415−422. doi: 10.1079/PHN2002434
    [8]
    FREDLUND K, ISAKSSON M, ROSSANDER-HULTHÉN L, et al. Absorption of zinc and retention of calcium: Dose-dependent inhibition by phytate[J]. Journal of Trace Elements in Medicine and Biology,2006,20(1):49−57. doi: 10.1016/j.jtemb.2006.01.003
    [9]
    URBANO G, LÓPEZ-JURADO M, ARANDA P, et al. The role of phytic acid in legumes: Antinutrient or beneficial function?[J]. Journal of Physiology and Biochemistry,2000,56(3):283−294. doi: 10.1007/BF03179796
    [10]
    牛萌萌, 王妍, 门彩玉, 等. 米根霉和乳酸菌混合固态发酵大麦仁工艺优化及其抗氧化活性[J]. 食品工业科技,2018,39(22):169−174. [NIU M M, WANG Y, MEN C Y, et al. Optimization of mixed solid-state fermentation process of dehusked barley with Rhizopus oryzae and Lactobacillus and its antioxidant activity[J]. Science and Technology of Food Industry,2018,39(22):169−174.

    NIU M M, WANG Y, MEN C Y, et al. Optimization of mixed solid-state fermentation process of dehusked barley with Rhizopus oryzae and Lactobacillus and its antioxidant activity[J]. Science and Technology of Food Industry, 2018, 39(22): 169-174.
    [11]
    路锶, 田北, 赵丹, 等. 真菌固态发酵对荞麦营养功能成分的影响[J]. 食品科技,2012,37(8):148−151. [LU S, TIAN B, ZHAO D, et al. The effect of fungi solid-state fermentation on nutritional constituents of buckwheat[J]. Food Science and Technology,2012,37(8):148−151.

    LU S, TIAN B, ZHAO D, et al. The effect of fungi solid-state fermentation on nutritional constituents of buckwheat[J]. Food Science And Technology, 2012, 37(8): 148-151.
    [12]
    RODRÍGUEZ H, CURIEL J A, LANDETE J M, et al. Food phenolics and lactic acid bacteria[J]. International Journal of Food Microbiology,2009,132(2-3):79−90. doi: 10.1016/j.ijfoodmicro.2009.03.025
    [13]
    张杰, 张文刚, 党斌, 等. 乳酸菌和米根霉混合固态发酵对黑青稞生化成分的动态变化[J]. 食品工业科技,2019,40(24):88−93. [ZHANG J, ZHANG W G, DANG B, et al. Dynamic changes of biochemical composition of black highland barley by mixed solid-state fermentation with lactic acid bacteria and Rhizopus oryzae[J]. Science and Technology of Food Industry,2019,40(24):88−93.

    ZHANG J, ZHANG W G, DANG B, et al. Dynamic changes of biochemical composition of black highland barley by mixed solid-state fermentation with lactic acid bacteria and Rhizopus oryzae[J]. Science and Technology of Food Industry, 2019, 40(24): 88-93.
    [14]
    李锡阁, 周成翀, 吴志新, 等. 微生物复合发酵对豆粕营养品质的影响[J]. 华中农业大学学报,2019,38(6):123−131. [LI X G, ZHOU C C, WU Z X, et al. Effect of microbial compound fermentation on nutritional quality of soybean meal[J]. Journal of Huazhong Agricultural University,2019,38(6):123−131.

    LI X G, ZHOU C C, WU Z X, et al. Effect of microbial compound fermentation on nutritional quality of soybean meal[J]. Journal of Huazhong Agricultural University, 2019, 38(6): 123-131.
    [15]
    胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业,2020,46(7):161−166. [HU P, YANG P, GUO T S. Change in physicochemical and processing properties of maize flour after solid fermentation with Lactobacillus plantarum and Rhizopus oryzae[J]. Food and Fermentation Industries,2020,46(7):161−166.

    HU P, YANG P, GUO T S. Change in physicochemical and processing properties of maize flour after solid fermentation with Lactobacillus plantarum and Rhizopus oryzae[J]. Food and Fermentation Industries, 2020, 46(7): 161-166
    [16]
    王璐瑶, 张笃芹, 牛猛, 等. 固态发酵对藜麦营养成分、酚类物质含量及抗氧化活性的影响[J]. 食品工业科技,2022,43(24):130−138. [WANG L Y, ZHANG D Q, NIU M, et al. Effects of solid-state fermentation on the nutrients, phenolics content and antioxidant activity of quinoa[J]. Science and Technology of Food Industry,2022,43(24):130−138.

    WANG L Y, ZHANG D Q, NIU M, et al. Effects of solid-state fermentation on the nutrients, phenolics content and antioxidant activity of quinoa[J]. Science and Technology of Food Industry, 2022, 43(24): 130-138.
    [17]
    高文军, 李卫红, 王喜明, 等. 3, 5-二硝基水杨酸法测定蔓菁中还原糖和总糖含量[J]. 中国药业,2020,29(9):113−116. [GAO W J, LI W H, WANG X M, et al. Determination of reducing sugar and total sugar in turnip by 3, 5-dinitrosalicylic acid colorimetry[J]. China Pharmaceuticals,2020,29(9):113−116. doi: 10.3969/j.issn.1006-4931.2020.09.034

    GAO W J, LI W H, WANG X M, et al. Determination of reducing sugar and total sugar in turnip by 3, 5-dinitrosalicylic acid colorimetry[J]. China Pharmaceuticals, 2020, 29(9): 113-116. doi: 10.3969/j.issn.1006-4931.2020.09.034
    [18]
    许立益, 余宏达, 江冬怡, 等. 紫米与籼米复配比对复配粉性质及紫米粉丝品质的影响[J]. 食品工业科技,2022,43(17):114−121. [XU L Y, YU H D, JIANG D Y, et al. Effects of the mixing ratio of purple rice and indica rice on the properties of mixed powder and the quality of purple rice noodles[J]. Science and Technology of Food Industry,2022,43(17):114−121.

    XU L Y, YU H D, JIANG D Y, et al. Effects of the mixing ratio of purple rice and indica rice on the properties of mixed powder and the quality of purple rice noodles[J]. Science and Technology of Food Industry, 2022, 43(17): 114-121.
    [19]
    王乃富. 乳酸菌发酵酶解豆粉及其生物活性研究[D]. 无锡: 江南大学, 2007

    WANG N F. Studies on the biological activity of soybean flour processed bylactic acid fermentation and enzymatic hydrolysis[D]. Wuxi: Jiangnan University, 2007.
    [20]
    张夏秋, 刘丽娅, 王丽丽, 等. 米根霉发酵米糠工艺优化及其益生活性研究[J]. 核农学报,2020,34(10):2280−2289. [ZHANG X Q, L L Y, W L L, et al. Optimization of the fermentation process of rice bran with Rhizopus oryzae and its probiotic activities[J]. Journal of Nuclear Agricultural Sciences,2020,34(10):2280−2289. doi: 10.11869/j.issn.100-8551.2020.10.2280

    ZHANG X Q, L L Y, W L L, et al. Optimization of the fermentation process of rice bran with Rhizopus oryzae and its probiotic activities[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2280-2289. doi: 10.11869/j.issn.100-8551.2020.10.2280
    [21]
    柯玮. 米根霉发酵产L-乳酸途径丙酮酸分支点调控机理研究[D]. 合肥: 合肥工业大学, 2013

    KE W. Regulation mechanism on pyruvate branch point of Rhizopus oryzae As3.2686 during L-lactic acid production abstract[D]. Hefei: Hefei University of Technology, 2013.
    [22]
    ENGLYST H N, KINGMAN S M, CUMMINGS J H. Classification and measurement of nutritionally important starch fractions[J]. Eur J Clin Nutr,1992,46(Suppl 2):S33−S50.
    [23]
    赵丹, 勾剑颖, 姚世聪, 等. 真菌固态发酵对紫米总酚和总黄酮含量的影响[J]. 食品科技,2012,37(12):136−139. [ZHAO D, GOU J Y, YAO S C, et al. The effects on total phenolics content and flavonoids of purple rice by fungi solid-state fermentation[J]. Food Science And Technology,2012,37(12):136−139.

    ZHAO D, GOU J Y, YAO S C, et al. The effects on total phenolics content and flavonoids of purple rice by fungi solid-state fermentation[J]. Food Science And Technology, 2012, 37(12): 136-139.
    [24]
    杨凌霄, 程李琳, 张晖, 等. 不同挤压温度对糙米体外抗氧化活性的影响[J]. 食品工业科技,2014,35(8):135−138. [YANG L X, CHENG L L, ZHANG H, et al. Effect of extrusion on the antioxidant ability of brown rice in vitro[J]. Science and Technology of Food Industry,2014,35(8):135−138.

    YANG L X, CHENG L L, ZHANG H, et al. Effect of extrusion on the antioxidant ability of brown rice in vitro[J]. Science and Technology of Food Industry, 2014, 35(8): 135-138.
    [25]
    黄士淇, 邢晨, 蔡圣宝. 不同真菌发酵对墨江紫米多酚及其抗氧化性影响的比较[J]. 食品与发酵工业,2017,43(4):112−118. [HUANG S Q, XING C, CAI S B, et al. A comparative investigation on the effects of different fungi fermentation on the polyphenols content and antioxidant activity of Mojiang purple rice (Oryza sativa L.)[J]. Food And Fermentation Industries,2017,43(4):112−118.

    HUANG S Q, XING C, CAI S B, et al. A comparative investigation on the effects of different fungi fermentation on the polyphenols content and antioxidant activity of Mojiang purple rice (Oryza sativa L. )[J]. Food And Fermentation Industries, 2017, 43(4): 112-118.
    [26]
    温舒元, 范杰英, 魏春雁, 等. 分光光度法测定大豆中植酸含量的不确定度评估[J]. 东北农业科学,2019,44(3):92−96. [WEN S Y, FAN J Y, WEI C Y, et al. Evaluation of uncertainty of the determination of phytic acid content in soy-bean by spectrophotometry[J]. Journal of Northeast Agricultural Sciences,2019,44(3):92−96.

    WEN S Y, FAN J Y, WEI C Y, et al. Evaluation of uncertainty of the determination of phytic acid Content in soy-bean by spectrophotometry[J]. Journal of Northeast Agricultural Sciences, 2019, 44(3): 92-96.
    [27]
    刘庆艾, 杨俊慧, 孟庆军, 等. 米根霉和乳酸菌发酵对玉米粉性质的影响[J]. 山东科学,2015,28(2):58−62. [LIU Q A, YANG J H, MENG Q J, et al. Impact of Rhizopus oryzae and Lactobacillus fermentationon corn flour property[J]. Shandong Science,2015,28(2):58−62.

    LIU Q A, YANG J H, MENG Q J, et al. Impact of Rhizopus oryzae and Lactobacillus fermentationon corn flour property[J]. Shandong Science, 2015, 28(2): 58-62.
    [28]
    田海勇. 乳酸片球菌与米根霉混菌发酵对羊肉香肠菌群及其代谢特性的影响研究[D]. 贵阳: 贵州大学, 2022

    TIAN H Y. Study on the effect of mixed fermentation of Pediococcus lactis and Rhizopus oryzae on the microbial population and metabolic characteristics of mutton sausage[D]. Guiyang: Guizhou University, 2022.
    [29]
    郑思扬. 酒曲中产淀粉酶菌株的筛选及产酶条件的优化[D]. 长沙: 湖南农业大学, 2021

    ZHENG S Y. Screening of amylase-producing strains in Jiuqu and optimization of enzyme-producing conditions[D]. Changsha: Hunan Agricultural University, 2021.
    [30]
    汤小朋. 单菌及混菌固态发酵改善木薯渣品质的研究[D]. 雅安: 四川农业大学, 2014

    TANG X P. The Researches on nutritional improvement of cassava residue by solid-state fermentationwith single and complex microbial strains[D]. Ya’an: Sichuan Agricultural University, 2014.
    [31]
    许玉慧, 许喜林, 辛淑敏. 即食湿面条中腐败微生物的分离和鉴定的初步研究[J]. 中国酿造,2014,33(7):68−71. [XU Y H, XU X L, XIN S M. Separation and identification of spoilage microorganisms in instant wet noodles[J]. China Brewing,2014,33(7):68−71. doi: 10.11882/j.issn.0254-5071.2014.07.015

    XU Y H, XU X L, XIN S M. Separation and identification of spoilage microorganisms in instant wet noodles[J]. China Brewing, 2014, 33(7): 68-71. doi: 10.11882/j.issn.0254-5071.2014.07.015
    [32]
    鹿保鑫, 孙靖辰, 王坤, 等. 三种霉菌发酵燕麦的工艺优化[J]. 农产品加工,2021(12):30−35. [LU B X, SUN J C, WANG K, et al. Optimization of the process of fermentation oats with three molds[J]. Farm Products Processing,2021(12):30−35.

    LU B X, SUN J C, WANG K, et al. Optimization of the process of fermentation oats with three molds[J]. Farm Products Processing, 2021(12): 30-35.
    [33]
    李燕军, 赵岩, 黄龙辉, 等. 微生物同步利用葡萄糖和木糖代谢工程概述[J]. 发酵科技通讯,2017,46(1):54−59. [LI Y J, ZHAO Y, HUANG L H, et al. Overview of metabolic engineering on simultaneous utilization of glucose and xylose by microbes[J]. Bulletin of Fermentation Science and Technology,2017,46(1):54−59.

    LI Y J, ZHAO Y, HUANG L H, et al. Overview of metabolic engineering on simultaneous utilization of glucose and xylose by microbes[J]. Bulletin of Fermentation Science and Technology, 2017, 46(1): 54-59.
    [34]
    赵丹, 姚世聪, 路锶. 紫米营养成分在真菌固态发酵过程中的变化[J]. 食品科技,2012,37(11):159−163. [ZHAO D, YAO S C, LU S. The changes on nutritional constituents of purple rice during fungi solid-state fermentation[J]. Food Sicence and Technology,2012,37(11):159−163.

    ZHAO D, YAO S C, LU S. The changes on nutritional constituents of purple rice during fungi solid-state fermentation[J]. Food Sicence And Technology, 2012, 37(11): 159-163.
    [35]
    周萍, 郑洁. 花色苷改性及应用研究进展[J]. 食品科学,2021,42(3):346−354. [ZHOU P, ZHENG J. Modification of anthocyanins for extended application: A review[J]. Food Science,2021,42(3):346−354. doi: 10.7506/spkx1002-6630-20200306-092

    ZHOU P, ZHENG J. Modification of anthocyanins for extended application: a review[J]. Food Science, 2021, 42(3): 346-354. doi: 10.7506/spkx1002-6630-20200306-092
    [36]
    寇芳, 葛云飞, 沈蒙, 等. 纯种发酵对小米淀粉分子结构及老化特性的影响[J]. 食品科学,2017,38(16):92−98. [KOU F, GE Y F, SHEN M, et al. Effects of pure culture fermentation on molecular structure and retrogradation characteristics of millet starch[J]. Food Science,2017,38(16):92−98. doi: 10.7506/spkx1002-6630-201716014

    KOU F, GE Y F, SHEN M, et al. Effects of pure culture fermentation on molecular structure and retrogradation characteristics of millet starch[J]. Food Science, 2017, 38(16): 92-98. doi: 10.7506/spkx1002-6630-201716014
    [37]
    KHAN S A, ZHANG M, LIU L, et al. Co-culture submerged fermentation by lactobacillus and yeast more effectively improved the profiles and bioaccessibility of phenolics in extruded brown rice than single-culture fermentation[J]. Food Chemistry,2020,326:126985. doi: 10.1016/j.foodchem.2020.126985
    [38]
    DANG, NUR, ANISAH, et al. Enhancement of phenolic acid content and antioxidant activity of rice bran fermented with Rhizopus oligosporus and Monascus purpureus[J]. Biocatalysis and Agricultural Biotechnology,2015,4(1):33−38. doi: 10.1016/j.bcab.2014.11.003
    [39]
    王猛, 郭静, 陆俊. 乳酸菌发酵对有色米多酚含量及其抗氧化活性影响研究[J]. 粮食与油脂,2021,34(8):43−47. [WANG M, GUO J, LU J. The effect on polyphenols content and antioxidant activity of pigmented rice by lactic acid bacteria fermentation[J]. Journal of Cereals and Oils,2021,34(8):43−47. doi: 10.3969/j.issn.1008-9578.2021.08.012

    WANG M, GUO J, LU J. The effect on polyphenols content and antioxidant activity of pigmented rice by lactic acid bacteria fermentation[J]. Journal of Cereals and Oils, 2021, 34(8): 43-47. doi: 10.3969/j.issn.1008-9578.2021.08.012
    [40]
    MOHEDANO M L, P LÓPEZ, SPANO G, et al. Controlling the formation of biogenic amines in fermented foods[J]. Advances in Fermented Foods and Beverages, 2015: 273-310.
    [41]
    EL HAG M E, EL TINAY A H, YOUSIF N E. Effect of fermentation and dehulling on starch, total polyphenols, phytic acid content and in vitro protein digestibility of pearl millet[J]. Food Chemistry,2002,77(2):193−196. doi: 10.1016/S0308-8146(01)00336-3
    [42]
    REDDY N R, PIERSON M D. Reduction in antinutritional and toxic components in plant foods by fermentation[J]. Food Research International,1994,27(3):281−290. doi: 10.1016/0963-9969(94)90096-5
    [43]
    曹伟超, 罗昆, 程新, 等. 高产植酸酶乳酸菌及其黑豆酸面团发酵低植酸营养面包研究[J]. 食品与机械,2021,37(2):186−193. [CAO W C, LUO K, CHENG X, et al. Studies on screening of high-yield phytase-producing lactic acid bacteria and its low-phytate nutritional breadsthrough black bean sourdough fermentation[J]. Food and Machinery,2021,37(2):186−193.

    CAO W C, LUO K, CHENG X, et al. Studies on screening of high-yield phytase-producing lactic acid bacteria and its low-phytate nutritional breadsthrough black bean sourdough fermentation[J]. Food and Machinery, 2021, 37(2): 186-193.
  • Cited by

    Periodical cited type(4)

    1. 严和平,徐世娟,蔡朴春,张举成. 基于响应面法和神经网络优化野生狼牙刺中总黄酮的提取工艺. 黑龙江科学. 2025(02): 20-25 .
    2. 乌日娜,赵玉莲,郭佳,史海粟,安飞宇. 微生物发酵食品新进展. 微生物学杂志. 2025(01): 1-13 .
    3. 王宁晓璇,李欣,黄玉立,王雅利,赖海梅,杨梦露,汤臣薇,葛黎红,赵楠. 机器学习在传统发酵食品微生物结构及品质控制中的应用研究进展. 食品工业科技. 2024(13): 360-367 . 本站查看
    4. 茆鑫,郑剑斌,李广耀,曲敏,郑心琪. 响应曲面法优化刺五加-五味子混菌发酵工艺的研究. 食品科技. 2023(09): 57-64 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (120) PDF downloads (12) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return