XU Qingpeng, JIANG Xiujie, ZHANG Jiayu, et al. Effect and Process Conditions of Cold Plasma Combined withL-Glutamic Acid and Salt Stress on Germination and Enrichment ofγ-Aminobutyric Acid in Adzuki Bean[J]. Science and Technology of Food Industry, 2023, 44(22): 160−168. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120205.
Citation: XU Qingpeng, JIANG Xiujie, ZHANG Jiayu, et al. Effect and Process Conditions of Cold Plasma Combined withL-Glutamic Acid and Salt Stress on Germination and Enrichment ofγ-Aminobutyric Acid in Adzuki Bean[J]. Science and Technology of Food Industry, 2023, 44(22): 160−168. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120205.

Effect and Process Conditions of Cold Plasma Combined withL-Glutamic Acid and Salt Stress on Germination and Enrichment ofγ-Aminobutyric Acid in Adzuki Bean

More Information
  • Received Date: December 25, 2022
  • Available Online: September 13, 2023
  • This study aimed to investigate the effect of cold atmospheric pressure plasma (CAPP) treatment combined with salt stress on the enrichment of gamma-aminobutyric acid (GABA) in adzuki beans after germination. The effect of CAPP voltage, frequency, and duration of treatment of seeds, on their GABA content during germination was investigated using adzuki beans as raw material. In addition, the method of germination using L-glutamic acid (L-Glu) combined with salt stress was used to investigate the effect of single factors (germination time and concentrations of CaCl2, L-Glu, and NaCl) on enrichment of GABA. The optimal process conditions for enrichment of GABA using response surface optimization experiments were also determined. The results showed that the treatment of seeds with CAPP technology had a beneficial effect on their germination and enrichment of GABA. The CAPP treatment was more effective under the following conditions: voltage of 90 kV, frequency of 120 Hz, and duration of 20 min. When the germination time was 58 h and the CaCl2, L-Glu, and NaCl concentrations were 4.4 mmol/L, 3.2 mg/mL, and 66 mmol/L, respectively, the GABA content of germinated adzuki beans was 160.23±2.91 mg/100 g, which was 7.12 times higher than that of ungerminated adzuki beans. This method is efficient, reliable, cost-effective, and provides a technical reference for the industrial production of GABA-rich foods.
  • [1]
    林杨, 唐琦勇, 楚敏, 等. γ-氨基丁酸的功能、生产及食品应用研究进展[J]. 中国调味品,2021,46(6):173−179

    LIN Y, TANG Q Y, CHU M, et al. Research progress on function, production and food application of γ-aminobutyric acid[J]. China Condiment,2021,46(6):173−179.
    [2]
    IKRAM A, SAEED F, AFZAAL M, et al. Nutritional and end-use perspectives of sprouted grains: A comprehensive review[J]. Food Science & Nutrition,2021,9(8):4617−4628.
    [3]
    周一峰, 陈治然. 不同发芽条件对发芽花豆γ-氨基丁酸含量的影响[C]//杭州: 中国食品科学技术学会第十一届年会论文摘要集,2014:247−248

    ZHOU Y F, CHEN Z R. Effect of different germination conditions on the γ-aminobutyric acid content of germinating flowering beans[C]// Hangzhou: Abstracts of the 11th Annual Conference of the Chinese Society of Food Science and Technology,2014:247−248.
    [4]
    左娜, 陈洁, 吕莹果, 等. 豆类发芽富集GABA的研究[J]. 粮食与油脂,2016,29(6):29−32

    ZUO N, CHEN J, LÜ Y G, et al. Research on enrichment of GABA by bean sprouting[J]. Cereals & Oils,2016,29(6):29−32.
    [5]
    JIANG X J, XU Q P, ZHANG A W et al. Optimization of γ-aminobutyric acid (GABA) accumulation in germinating adzuki beans ( Vigna angularis) by vacuum treatment and monosodium glutamate, and the molecular mechanisms[J]. Frontiers in Nutrition,2021,8:693862. doi: 10.3389/fnut.2021.693862
    [6]
    吕秋洁, 郑经绍, 余宏达, 等. 富含GABA和花色苷的发芽紫糙米加工工艺研究[J]. 热带作物学报,2021,42(1):220−229

    LÜ Q J, ZHENG J S, YU H D, et al. Processing technology of germinating purple brown rice rich in γ-aminobutyric acid (GABA) and anthocyanin[J]. Chinese Journal of Tropical Crops,2021,42(1):220−229.
    [7]
    曾晴, 谢菲, 尹京苑, 等. 大豆发芽富集 γ-氨基丁酸的培养液组分优化及盐胁迫下的富集机理[J]. 食品科学,2017,38(12):96−103

    ZENG Q, XIE F, YIN J Y, et al. Optimization of medium composition for γ-aminobutyric acid accumulation in germinated soybean and mechanism of γ-aminobutyric acid accumulation under salt stress[J]. Food Science,2017,38(12):96−103.
    [8]
    ZHANG L C, HAO N, LI W J, et al. Effect of ultrasonic induction on the main physiological and biochemical indicators and γ-aminobutyric acid content of maize during germination[J]. Foods,2022,11(9):1358. doi: 10.3390/foods11091358
    [9]
    YANG R Q, HUI Q R, FENG X Y, et al. The mechanism of freeze-thawing induced accumulation of γ-aminobutyric acid in germinated soybean[J]. Journal of the Science of Food and Agriculture,2020,3:1099−1105.
    [10]
    RENÁTA Š, ĽUDMILA S, ĽUDMILA H, et al. Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination[J]. Plants,2021,10:177. doi: 10.3390/plants10010177
    [11]
    李艾霖. 发芽甜荞中GABA富集技术的研究[D]. 晋中:山西农业大学, 2018

    LI A L. Study on technology of GABA accumulation in germinate buckwheat[D]. Jinzhong:Shanxi Agricultural University, 2018.
    [12]
    DUMONT H J, ADRIAENS E. Atmospheric cold plasma as new strategy for foods processing-an overview[J]. Innovative Romanian Food Biotechnology,2014,96(1):88−90.
    [13]
    PRIATAMA R A, PERVITASARI A N, PARK S, et al.Current advancements in the molecular mechanism of plasma treatment for seed germination and plant growth[J]. International Journal of Molecular Sciences,2022,23(9):4609. doi: 10.3390/ijms23094609
    [14]
    LIU H K, ZHANG X W, CUI Z Y, et al. Cold plasma effects on the nutrients and microbiological quality of sprouts[J]. Food Research International,2022,159:111655. doi: 10.1016/j.foodres.2022.111655
    [15]
    BOURKE P, ZIUZINA D, BOEHM D, et al. The potential of cold plasma for safe and sustainable food production[J]. Trends in Biotechnology,2018,36(6):615−626. doi: 10.1016/j.tibtech.2017.11.001
    [16]
    CHEN H H, CHANG H C, CHEN Y K, et al. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma[J]. Food Chemistry,2016,191:120−127. doi: 10.1016/j.foodchem.2015.01.083
    [17]
    ŠIMONČICOVÁ J, KRYŠTOFOVÁ S, MEDVECKÁ V, et al. Technical applications of plasma treatments: Current state and perspectives[J]. Applied Microbiology and Biotechnology,2019,13(103):5117−5129.
    [18]
    姜秀杰, 张桂芳, 张东杰. 真空协同发芽富集豌豆 γ-氨基丁酸的工艺优化研究[J]. 食品科技,2020,45(5):58−63

    JIANG X J, ZHANG G F, ZHANG D J. Optimization of vacuum and germination treatment on γ-aminobutyric acid accumulation in pea[J]. Food Science and Technology,2020,45(5):58−63.
    [19]
    苏欢. 利用选择性基因分型技术和残余杂合系群体定位大豆生育期和分枝数相关QTL[D]. 聊城:聊城大学, 2017

    SU H. Using selective genotyping and residual heterozygous line to identify soybean growth period and branch number OTL[D]. Liaocheng:Liaocheng University, 2017.
    [20]
    BOUCHÉ N, FROMM H. GABA in plants: Just a metabolite?[J]. Trends in Plant Science,2004,9(3):110−115. doi: 10.1016/j.tplants.2004.01.006
    [21]
    何林阳, 杨杨, 陈凤莲, 等. 响应面法优化发芽糙米生物活性物质提取工艺[J]. 食品安全质量检测学报,2022,13(1):199−207 doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201027

    HE L Y, YANG Y, CHEN F L, et al. Optimization of extraction process of bioactive substances from germinated brown rice by response surface methodology[J]. Journal of Food Safety & Quality,2022,13(1):199−207. doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201027
    [22]
    FILATOVA I, AZHARONOK V, KADYROV M. Rf and microwave plasma application for pre-sowing caryopsis treatments[J]. Publication Astron Obs. Belgrade,2010,89:289−292.
    [23]
    MCDONALD M B. Seed germination and seedling establishment[M]. Madison:American Society of Agronomy, 1994:37−60.
    [24]
    BORMASHENKO E, GRYNYOV R, BORMASHENKO Y, et al. Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds[J]. Scientific Reports,2012(2):741.
    [25]
    CHEN H H, CHEN Y K, CHANG H C. Evaluation of physicochemical properties of plasma treated brown rice[J]. Food Chemistry,2012,135(1):74−79. doi: 10.1016/j.foodchem.2012.04.092
    [26]
    ALVES JUNIOR C, DE OLIVEIRA VITORIANO J, DA SILVA DL, et al. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma[J]. Scientific Reports,2016,6:33722. doi: 10.1038/srep33722
    [27]
    王佳媚, 黄明明, 乔维维, 等. 冷源等离子体冷杀菌技术及其在食品中的应用研究[J]. 中国农业科技导报,2015,17(5):55−62

    WANG J M, HUANG M M, QIAO W W, et al. Disinfection technology of cold plasma and its application in food[J]. Journal of Agricultural Science and Technology,2015,17(5):55−62.
    [28]
    何瑞, 童家赟, 张晓丽, 等. 大气压等离子体处理对穿心莲种子萌发及幼苗的影响初报[J]. 广东农业科学,2011,38(16):23−25 doi: 10.3969/j.issn.1004-874X.2011.16.009

    HE R, TONG J B, ZHANG X L, et al. Preliminary study of effect of atmospheric pressure plasma on the germination and seedling of Andrographis paniculate[J]. Guangdong Agricultural Sciences,2011,38(16):23−25. doi: 10.3969/j.issn.1004-874X.2011.16.009
    [29]
    BUTSCHER D, VAN LOON H, WASKOW A, et al. Plasma inactivation of microorganisms on sprout seeds in a dielectric barrier discharge[J]. International Journal of Food Microbiology,2016,238:222−232. doi: 10.1016/j.ijfoodmicro.2016.09.006
    [30]
    VOLKOV A G, BOOKAL A, HAIRSTON J S, et al. Radio frequency plasma capacitor can increase rates of seeds imbibition, germination, and radicle growth[J]. Functional Plant Biology,2021,48(3):312−320. doi: 10.1071/FP20293
    [31]
    AL-QURAAN N A, SARTAWE F A, QARYOUTI M M. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat ( Triticum aestivum L.) seedlings under salt and osmotic stress[J]. Journal of Plant Physiology,2013,170(11):1003−1009. doi: 10.1016/j.jplph.2013.02.010
    [32]
    XING S G, JUN Y B, HAU Z W, et al. Higher accumulation of gamma-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots[J]. Plant Physiology and Biochemistry,2007,45(8):560−566. doi: 10.1016/j.plaphy.2007.05.007
    [33]
    YANG R Q, WANG M, FENG X Y, et al. AMADH inhibitor optimization and its effects on GABA accumulation in soybean sprouts under NaCl-CaCl2 treatment[J]. 3 Biotech,2019,9(5):184. doi: 10.1007/s13205-019-1715-7
    [34]
    ZHAO Y Y, XIE C, WANG P, et al. GABA regulates phenolics accumulation in soybean sprouts under NaCl stress[J]. Antioxidants (Basel),2021,10(6):990. doi: 10.3390/antiox10060990
    [35]
    FALCINELLI B, SILEONI V, MARCONI O, et al. Germination under moderate salinity increases phenolic content and antioxidant activity in rapeseed ( Brassica napus var oleifera Del.) sprouts[J]. Molecules,2017,22(8):1377. doi: 10.3390/molecules22081377
    [36]
    BAUM G, CHEN Y, ARAZI T, et al. A plant glutamate decarboxylase containing a calmodulin binding domain. Cloning, sequence, and functional analysis[J]. Journal of Biological Chemistry,1993,26(268):19610−19617.
    [37]
    WANG Y S, LUO Z S, MAO L C, et al. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit[J]. Food Chemistry,2016,197:333−339. doi: 10.1016/j.foodchem.2015.10.118
    [38]
    王姗姗, 刘小娇, 胡赟, 等. 植物中 γ-氨基丁酸的代谢及富集机制[J]. 安徽农业科学,2020,48(24):9−12 doi: 10.3969/j.issn.0517-6611.2020.24.003

    WANG S S, LIU X J, HU B, et al. Metabolism and enrichment mechanism of γ-aminobutyric acid in plants[J]. Journal of Anhui Agricultural Sciences,2020,48(24):9−12. doi: 10.3969/j.issn.0517-6611.2020.24.003
    [39]
    朱云辉, 郭元新. 响应面法优化发芽苦荞富集 γ-氨基丁酸的培养条件[J]. 西北农林科技大学学报(自然科学版),2016,44(11):141−148

    ZHU Y H, GUO Y X. Optimizing culture conditions for GABA accumulation in germinated buckwheat based on response surface methodology[J]. Journal of Northwest A & F University (Natural Science Edition),2016,44(11):141−148.
    [40]
    王斌, 丁俊胄, 贾才华, 等. 环境胁迫植物富集 γ-氨基丁酸的研究进展[J]. 食品工业科技,2018,39(18):342−346,352

    WANG B, DING J Z, JIA C H, et al. Research progress on enrichment of γ-aminobutyric acid in plants under environmental stress[J]. Science and Technology of Food Industry,2018,39(18):342−346,352.
    [41]
    顾振新, 蒋振晖. 食品原料中 γ-氨基丁酸(GABA)形成机理及富集技术[J]. 食品与发酵工业,2002(10):65−69 doi: 10.3321/j.issn:0253-990X.2002.10.016

    GU Z X, JIANG Z H. Mechanism of γ-aminobutyric acid (GABA) formation and enrichment technology in food materials[J]. Food and Fermentation Industries,2002(10):65−69. doi: 10.3321/j.issn:0253-990X.2002.10.016
    [42]
    陈惠, 杨润强, 韩永斌, 等. 发芽蚕豆富集 γ-氨基丁酸的培养液组分优化[J]. 中国粮油学报,2011,26(11):27−31

    CHEN H, YANG R Q, HAN Y B, et al. Optimization of culture medium components for the enrichment of γ-aminobutyric acid in germinating broad beans[J]. Journal of the Chinese Cereals and Oils Association,2011,26(11):27−31.
    [43]
    尹永祺. NaCl及其联合Ca2+处理下发芽大豆生理变化与GABA富集调控机理[D]. 南京:南京农业大学, 2014

    YIN Y Q. Study on the physiological change and the regulation mechanism of GABA accumulation in germinating soybean under NaCl and NaCl-Ca2+ treatment[D]. Nanjing: Nanjing Agricultural University, 2014.
    [44]
    任珺, 孙梦洁, 张照桤, 等. 外源钙对盐胁迫下苦豆子( Sophora alopecuroides)种子萌发和幼苗生长的影响[J]. 中国沙漠,2019,39(1):105−109

    REN J, SUN M J, ZHANG Z Q, et al. Seed germination and seedling growth of Sophora alopecuroides under saline alkali stress[J]. Journal of Desert Research,2019,39(1):105−109.
    [45]
    尹永祺, 李童, 王淑雯, 等. 钙离子通道抑制剂处理下发芽大豆主要生理生化和 γ-氨基丁酸的代谢变化[J]. 食品工业科技,2016,37(16):122−126

    YIN Y Q, LI T, WANG S W, et al. Physiological change and the regulation of γ-aminobutyric acid accumulation in germinated soybean under inhibitors of calcium channel treatment[J]. Science and Technology of Food Industry,2016,37(16):122−126.
    [46]
    郑秀芳, 张超强. 外源钙对盐胁迫下马铃薯试管苗生长和相关生理特性的影响[J]. 西北农业学报,2015,24(6):97−102 doi: 10.7606/j.issn.1004-1389.2015.06.015

    ZHENG X F, ZHANG C Q. Effects of exogenous Ca(NO3)2 on growth and physiological characteristics of potato test-tube seedlings under salt stress[J]. Acta Agriculturae Boreali-occidentalis Sinica,2015,24(6):97−102. doi: 10.7606/j.issn.1004-1389.2015.06.015
  • Cited by

    Periodical cited type(7)

    1. 宁淼,乌日娜,贺凯茹,包雨飞,张钰欣,杨慧,武俊瑞. 益生菌缓解牛乳过敏的作用机制研究进展. 食品工业科技. 2025(05): 371-379 . 本站查看
    2. 梅芷晴,马浩睿,刘永峰,胡坚,舒琴. 羊乳母乳化及主要活性成分研究进展. 乳业科学与技术. 2024(04): 38-46 .
    3. 乔蕾蕾,杨敏,秦娟娟,廖海周,季伟,李茜. 酸诱导酪蛋白胶束-海藻酸钠乳液凝胶性质及其对原花青素的负载性能. 食品科学. 2023(16): 50-60 .
    4. 汤晓娜,许曦瑶,赵锋. 牛奶β-酪蛋白水解产物生物活性及A2乳制品的研究进展. 食品与发酵工业. 2023(19): 360-366 .
    5. 马小梅,苏津贤,陈遥,舒星富,张海霞,马忠仁. 动物乳中四种主要蛋白结构功能及其分离纯化方法研究进展. 西北民族大学学报(自然科学版). 2022(02): 74-79 .
    6. 钱冠林,孙敬,刘微,程娇,岳喜庆,郑艳. 双酶水解对脱脂牛乳致敏性的影响. 乳业科学与技术. 2022(04): 36-44 .
    7. 李敏,刘爱成,朱晴,陈馨萍,刘微,梁肖娜,郑艳,岳喜庆. 酶解对脱脂牛乳蛋白抗原性及感官特性的影响. 乳业科学与技术. 2022(04): 14-21 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (85) PDF downloads (19) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return