SHI Jing, ZOU Ye, MA Jingjing, et al. Structural Characterization and Stability Study of Iron-Chelating Peptides from Chicken Blood[J]. Science and Technology of Food Industry, 2023, 44(19): 427−432. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120119.
Citation: SHI Jing, ZOU Ye, MA Jingjing, et al. Structural Characterization and Stability Study of Iron-Chelating Peptides from Chicken Blood[J]. Science and Technology of Food Industry, 2023, 44(19): 427−432. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120119.

Structural Characterization and Stability Study of Iron-Chelating Peptides from Chicken Blood

More Information
  • Received Date: December 13, 2022
  • Available Online: July 26, 2023
  • To evaluate the potential of chicken blood for dietary iron supplementation, chicken blood and ferrous chloride were used as raw materials to prepare iron-chelating peptides from chicken blood in this paper. The structure of iron-chelating peptides from chicken blood was characterized by scanning electron microscopy and differential scanning calorimetry. The stability of iron-chelating peptides from chicken blood was analyzed at different temperatures (30~80 ℃) and pH (2~9), and its in vitro stability was also discussed. The study confirmed that it had good thermal stability (iron retention rate above 73.76%) and acid and alkali resistance. The digestive stability of iron-chelating peptides from chicken blood (iron retention of 86.01%) was found to be better than that of ferrous sulfate and ferrous gluconate by simulated digestion in vitro. In addition, under the influence of three dietary factors, namely 1% phytic acid, 1% oxalic acid, and 8% dietary fiber, iron-chelating peptides from chicken blood showed better bioaccessibility than ferrous sulfate and ferrous gluconate.
  • [1]
    2021年肉鸡产业发展形势及2022年展望[J]. 中国畜牧业, 2022(3): 43−46

    Development situation of broiler industry in 2021 and prospect in 2022[J]. China Animal Husbandry, 2022(3): 43−46.
    [2]
    HAMZEH A, WONGNGAM W, KIATSONGCHAI R, et al. Cellular and chemical antioxidant activities of chicken blood hydrolysates as affected byin vitro gastrointestinal digestion[J]. Poultry Science,2019,98(11):6138−6148. doi: 10.3382/ps/pez283
    [3]
    宁芯, 黎梓玉, 班薇薇, 等. 酶法制备鸡血抗氧化肽及其抗氧化活性[J]. 食品工业,2020,41(12):129−133. [NING X, LI Z Y, BAN W W, et al. Optimization of preparation process for antioxidant peptides from chicken plasma and its antioxidant activities[J]. Food Industry,2020,41(12):129−133.

    NING X, LI Z Y, BAN W W, et al. Optimization of preparation process for antioxidant peptides from chicken plasma and its antioxidant activities[J]. Food Industry, 2020, 41(12): 129-133.
    [4]
    ZHENG Z, SI D, AHMAD B, et al. A novel antioxidative peptide derived from chicken blood corpuscle hydrolysate[J]. Food Research International,2018,106:410−419. doi: 10.1016/j.foodres.2017.12.078
    [5]
    郑敏, 王钏. 螯合铁工艺的研究进展[J]. 现代食品,2019(22):32−34, 37. [ZHENG M, WANG C. Research processing of iron-chelation technology[J]. Modern Food,2019(22):32−34, 37.

    ZHENG M, Wang C. Research processing of Iron-chelation Technology[J]. Modern Food, 2019(22): 32-34, 37.
    [6]
    KALGAONKAR S, LÖNNERDAL B. Effects of dietary factors on iron uptake from ferritin by Caco-2 cells[J]. The Journal of Nutritional Biochemistry,2008,19(1):33−39. doi: 10.1016/j.jnutbio.2007.02.001
    [7]
    CAETANO-SILVA M E, NETTO F M, BERTOLDO-PACHECO M T, et al. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi: 10.1080/10408398.2020.1761770
    [8]
    SHUBHAM K, ANUKIRUTHIKA T, DUTTA S, et al. Iron deficiency anemia: A comprehensive review on iron absorption, bioavailability and emerging food fortification approaches[J]. Trends in Food Science & Technology,2020,99:58−75.
    [9]
    管玲娟, 曹丛丛, 屠飘涵, 等. 缺铁对肠道免疫功能的影响及新型补铁剂的研究进展[J]. 食品与发酵工业,2020,46(19):264−270. [GUAN L J, CAO C C, TU P H, et al. Research progress of the effect of iron deficiency on intestinal immune function and new iron supplements[J]. Food and Fermentation Industry,2020,46(19):264−270.

    GUAN L J, CAO C C, TU P H, et al. Research progress of the effect of iron deficiency on intestinal immune function and new iron supplements[J]. Food and Fermentation Industry, 2020, 46(19): 264-270.
    [10]
    林海燕, 王珊, 孙珊, 等. 响应面法优化南极磷虾亚铁螯合肽制备工艺及其理化性质[J]. 食品工业科技,2019,40(21):166−173. [LIN H Y, WANG S, SUN S, et al. Optimization of preparation of iron-chelating peptides from Antarctic krill by response surface methodology and its physicochemical properties[J]. Science and Technology of Food Industry,2019,40(21):166−173.

    LIN H Y, WANG S S, SUN S, et al. Optimization of preparation of iron-chelating peptides from Antarctic krill by response surface methodology and its physicochemical properties[J]. Food Industry Science and Technology, 2019, 40(21): 166-173.
    [11]
    TIAN Q, FAN Y, HAO L, et al. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways[J]. Critical Reviews in Food Science and Nutrition,2021:1−13.
    [12]
    杨玉蓉, 李安平, 钟政昌, 等. 桃仁多肽螯合亚铁的抑菌活性及结构表征[J]. 食品科学,2019,40(5):57−62. [YANG Y R, LI A P, ZHONG Z C, et al. Antibacterial activity and structural characterization of peach kernel peptide-ferrous chelate[J]. Food Science,2019,40(5):57−62.

    YANG Y R, LI A P, ZHONG Z C, et al. Antibacterial activity and structural characterization of peach kernel peptide-ferrous chelate[J]. Food Science, 2019, 40(5): 57-62.
    [13]
    陈嘉琪, 张珍, 费莹莹, 等. 羊骨多肽亚铁螯合物的制备工艺优化及结构表征[J]. 食品与发酵科技,2021,57(5):1−7, 21. [CHEN J Q, ZHANG Z, FEI Y Y, et al. Preparation process optimization and structural characterization of sheep bone polypeptide chelate with ferrous iron[J]. Food and Fermentation Science and Technology,2021,57(5):1−7, 21.

    CHEN J Q, ZHANG Z, FEI Y Y, et al. Preparation process optimization and structural characterization of sheep bone polypeptide chelate with ferrous iron[J]. Food and Fermentation Science and Technology, 2021, 57(5): 1-7, 21.
    [14]
    CHEN Q, GUO L, DU F, et al. The chelating peptide (GPAGPHGPPG) derived from Alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells[J]. International Journal of Food Science & Technology,2017,52(5):1283−1290.
    [15]
    YANG J, HUANG J, DONG X, et al. Purification and identification of antioxidant peptides from duck plasma proteins[J]. Food Chemistry,2020,319:126534. doi: 10.1016/j.foodchem.2020.126534
    [16]
    杨静, 石景, 邹烨, 等. 鸡血多肽亚铁螯合物的制备工艺优化及结构表征[J]. 江苏农业学报,2022,38(6):1678−1685. [YANG J, SHI J, ZOU Y, et al. Preparation process optimization and structural characterization of chicken blood peptides-iron chelate[J]. Jiangsu Journal of Agriculture Science,2022,38(6):1678−1685.

    YANG J, SHI J, ZOU Y, et al. Preparation process optimization and structural characterization of chicken blood peptides-iron chelate[J]. Jiangsu Journal of Agriculture Science, 2022, 38(6): 1678-1685.
    [17]
    冯思敏, 王晶, 王羽莹, 等. 珍珠肽螯合钙的制备与性质表征[J]. 食品工业科技,2022,43(1):119−126. [FENG S M, WANG J, WANG Y Y, et al. Preparation and properties of pearl peptide chelated calcium[J]. Science and Technology of Food Industry,2022,43(1):119−126.

    FENG S M, WANG J, WANG Y Y, et al. Preparation and properties of pearl peptide chelated calcium[J]. Food Industry Science and Technology, 2022, 43(1): 119-126.
    [18]
    庞忠莉. 牡蛎肽亚铁螯合物的制备及性质研究[D]. 广州: 华南理工大学, 2020

    PANG Z L. Study on preparation and properties of oyster peptide ferrous chelate[D]. Guangzhou: South China University of Technology, 2020.
    [19]
    CAI X X, ZHAO L N, WANG S Y, et al. Fabrication and characterization of the nano-composite of whey protein hydrolysate chelated with calcium[J]. Food & Function,2015,6(3):816−823.
    [20]
    WU W, HE L, LIANG Y, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry,2019,284:80−89. doi: 10.1016/j.foodchem.2019.01.103
    [21]
    张玲. 罗非鱼皮胶原降解反应行为及肽钙螯合物制备研究[D]. 广州: 华南理工大学, 2020

    ZHANG L. Studies on tilapia skin collagen degradation behavior and preparation of peptide calcium chelate[D]. Guangzhou: South China University of Technology, 2020.
    [22]
    JIANG Y, LI J, ZHAO H, et al. Preparation of grape seed polypeptide and its calcium chelate with determination of calcium bioaccessibility and structural characterisation[J]. International Journal of Food Science and Technology,2021,56(1):166−177. doi: 10.1111/ijfs.14616
    [23]
    ZHANG Y, DING X, LI M. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans[J]. Food Chemistry,2021,349:129101. doi: 10.1016/j.foodchem.2021.129101
    [24]
    LI B, HE H, SHI W, et al. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization[J]. Journal of the Science of Food and Agriculture,2019,99(4):1834−1841. doi: 10.1002/jsfa.9377
    [25]
    SHILPASHREE B G, ARORA S, SHARMA V. Preparation of iron/zinc bound whey protein concentrate complexes and their stability[J]. LWT-Food Science and Technology,2016,66:514−522. doi: 10.1016/j.lwt.2015.11.005
    [26]
    汪卓. 蛋黄蛋白亚铁螯合肽的制备及螯合特性研究[D]. 广州: 华南理工大学, 2021

    WANG Z. Preparation and chelating properties of egg yolk protein ferrous chelating peptide[D]. Guangzhou: South China University of Technology, 2021.
    [27]
    CAETANO-SILVA M E, CILLA A, BERTOLDO-PACHECO M T, et al. Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes[J]. Journal of Food Composition and Analysis,2018,68:95−100. doi: 10.1016/j.jfca.2017.03.010
    [28]
    SUN X, SARTESHNIZI R A, BOACHIE R T, et al. Peptide-mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency[J]. Foods,2020,9(10):1−17.
    [29]
    HU S, LIN S, LIU Y, et al. Exploration of iron-binding mode, digestion kinetics, and iron absorption behavior of Antarctic krill-derived heptapeptide-iron complex[J]. Food Research International, 2022: 154.
    [30]
    MATTAR G, HADDARAH A, HADDAD J, et al. New approaches, bioavailability and the use of chelates as a promising method for food fortification[J]. Food Chemistry,2022,373:131394. doi: 10.1016/j.foodchem.2021.131394
    [31]
    LI Y, JIANG H, HUANG G. Protein hydrolysates as promoters of non-haem iron absorption[J]. Nutrients,2017,9(6):609. doi: 10.3390/nu9060609
    [32]
    LI J P, GONG C G, WANG Z Y, et al. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc[J]. Marine Drugs,2019,17(6):341. doi: 10.3390/md17060341
  • Cited by

    Periodical cited type(2)

    1. 祝超智,温耀涵,许龙,张秋会,王兴辉,赵改名,韩广星. 牛血红蛋白肽的酶解工艺优化及其亚铁螯合物结构、稳定性研究. 食品工业科技. 2024(08): 75-87 . 本站查看
    2. 吴晗硕,任杰,张新雪,付少委,李书国,刘文颖. 玉米肽亚铁螯合物的结构特性及稳定性. 现代食品科技. 2024(07): 137-144 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (125) PDF downloads (12) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return