Citation: | LI Shu, TONG Yuqin, YANG Shulin, et al. Effect of β-Nicotinamide Mononucleotide on the Growth Promotion of Caenorhabditis elegans and Its Mechanism[J]. Science and Technology of Food Industry, 2023, 44(19): 417−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120094. |
[1] |
COVARRUBIAS A J, PERRONE R, GROZIO A, et al. NAD+ metabolism and its roles in cellular processes during ageing[J]. Nature Reviews Molecular Cell Biology,2021,22(2):119−141. doi: 10.1038/s41580-020-00313-x
|
[2] |
BERTOLDO M J, LISTIJONO D R, HO W J, et al. NAD+ repletion rescues female fertility during reproductive aging[J]. Cell Reports,2020,30(6):1670−1681. doi: 10.1016/j.celrep.2020.01.058
|
[3] |
VERDIN E. NAD+ in aging, metabolism, and neurodegeneration[J]. Science,2015,350(6265):1208−1213. doi: 10.1126/science.aac4854
|
[4] |
KINCAID J W, BERGER N A. NAD+ metabolism in aging and cancer[J]. Experimental Biology and Medicine,2020,245(17):1594−1614. doi: 10.1177/1535370220929287
|
[5] |
BRAIDY N, LIU Y. NAD+ therapy in age-related degenerative disorders: A benefit/risk analysis[J]. Experimental Gerontology,2020,132:110831. doi: 10.1016/j.exger.2020.110831
|
[6] |
HONG W, MO F, ZHANG Z, et al. Nicotinamide mononucleotide: A promising molecule for therapy of diverse diseases by targeting NAD+ metabolism[J]. Frontiers in Cell and Developmental Biology,2020,8:246. doi: 10.3389/fcell.2020.00246
|
[7] |
CROTEAU D L, FANG E F, NILSEN H, et al. NAD+ in DNA repair and mitochondrial maintenance[J]. Cell Cycle,2017,16(6):491−492. doi: 10.1080/15384101.2017.1285631
|
[8] |
RU M, WANG W, ZHAI Z, et al. Nicotinamide mononucleotide supplementation protects the intestinal function in aging mice and D-galactose induced senescent cells[J]. Food Function,2022,13(14):7507−7519. doi: 10.1039/D2FO00525E
|
[9] |
KIM M, SEOL J, SATO T, et al. Effect of 12-week intake of nicotinamide mononucleotide on sleep quality, fatigue, and physical performance in older Japanese adults: A randomized, double-blind placebo-controlled study[J]. Nutrients,2022,14(4):755. doi: 10.3390/nu14040755
|
[10] |
BRITO S, BAEK J M, CHA B, et al. Nicotinamide mononucleotide reduces melanin production in aged melanocytes by inhibiting cAMP/Wnt signaling[J]. Journal of Dermatological Science,2022,106(3):159−169. doi: 10.1016/j.jdermsci.2022.05.002
|
[11] |
JIANG Y, DENG Y, PANG H, et al. Treatment of SARS-CoV-2-induced pneumonia with NAD+ and NMN in two mouse models[J]. Cell Discovery,2022,8(1):38. doi: 10.1038/s41421-022-00409-y
|
[12] |
HONG S M, LEE A Y, HWANG S M, et al. NAMPT mitigates colitis severity by supporting redox-sensitive activation of phagocytosis in inflammatory macrophages[J]. Redox Biology,2022,50:102237. doi: 10.1016/j.redox.2022.102237
|
[13] |
KIM H W, RYOO G H, JANG H Y, et al. NAD+-boosting molecules suppress mast cell degranulation and anaphylactic responses in mice[J]. Theranostics,2022,12(7):3316−3328. doi: 10.7150/thno.69684
|
[14] |
NAGAHISA T, YAMAGUCHI S, KOSUGI S, et al. Intestinal epithelial NAD+ biosynthesis regulates GLP-1 production and postprandial glucose metabolism in mice[J]. Endocrinology,2022,163(4):bqac023. doi: 10.1210/endocr/bqac023
|
[15] |
BAKER B L, NEECE C L, FENNING R M, et al. Mental disorders in five-year-old children with or without developmental delay: Focus on ADHD[J]. Journal of Clinical Child and Adolescent Psychology,2010,39(4):492−505. doi: 10.1080/15374416.2010.486321
|
[16] |
MARQUIS W A, BAKER B L. An examination of Anglo and Latino parenting practices: Relation to behavior problems in children with or without developmental delay[J]. Research in Developmental Disabilities,2014,35(2):383−392. doi: 10.1016/j.ridd.2013.11.010
|
[17] |
BRIAUX J, MARTIN-PREVEL Y, CARLES S, et al. Evaluation of an unconditional cash transfer program targeting children's first-1, 000-days linear growth in rural Togo: A cluster-randomized controlled trial[J]. PLoS Medicine,2020,17(11):e1003388. doi: 10.1371/journal.pmed.1003388
|
[18] |
王凤, 肖楚翔, 刘淑珍, 等. 榴莲核黄酮的提取及其对秀丽隐杆线虫氧化和衰老的影响[J]. 食品科学,2021,42(9):123−129. [WANG F, XIAO C X, LIU S Z, et al. Extraction of flavonoids from durian seeds and its antioxidant and anti-aging effects in Caenorhabditis elegans[J]. Food Science,2021,42(9):123−129.
WANG F, XIAO C X, LIU S Z, et al. Extraction of flavonoids from durian seeds and its antioxidant and anti-aging effects in Caenorhabditis elegans[J]. Food Science, 2021, 42(9): 123-129.
|
[19] |
沈静德. 秀丽隐杆线虫是研究发育生物学的好材料[J]. 生物学通报,1991(9):16−18. [SHEN J D. Caenorhabditis elegans is a good material for studying developmental biology[J]. Bulletin of Biology,1991(9):16−18.
SHEN J D. Caenorhabditis elegans is a good material for studying developmental biology[J]. Bulletin of biology, 1991(9): 16-18.
|
[20] |
夏程程, 杨番, 钟晓凌, 等. 秀丽隐杆线虫模型在食品安全研究中的应用[J]. 中国食品学报,2020,20(6):312−323. [XIA C C, YANG F, ZHONG X L, et al. Application of Caenorhabditis elegans model in food safety research[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(6):312−323.
XIA C C, YANG F, ZHONG X L, et al. Application of Caenorhabditis elegans model in food safety research[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(6): 312-323.
|
[21] |
程雷. 稳态磁场对秀丽隐杆线虫神经行为和早期胚胎发育的影响[D]. 合肥: 中国科学技术大学, 2022: 81−82
CHEN L. Effect of static magnetic fields on neurobehavior and early embryonic development in Caenorhabditis elegans[D]. Hefei: University of Science and Technology of China, 2022: 81−82.
|
[22] |
PRADHAN A, OLSSON P E, JASS J. Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans[J]. Chemosphere,2018,190(1):375−382.
|
[23] |
石珏, 杨亚宁, 黎青青, 等. 双酚A不同暴露方式对线虫生长生殖发育及凋亡的影响[J]. 环境化学,2018,37(6):1203−1208. [SHI J, YANG Y N, LI Q Q, et al. Effects of bisphenol A on the growth, reproductive development and apoptosis in Caenorhabditis elegans under different exposure routes[J]. Environmental Chemistry,2018,37(6):1203−1208.
SHI J, YANG Y N, LI Q Q, et al. Effects of bisphenol A on the growth, reproductive development and apoptosis in Caenorhabditis elegans under different exposure routes[J]. Environmental Chemistry, 2018, 37(6): 1203-1208.
|
[24] |
叶丽云, 程冰, 马水丽, 等. 赤芝多糖对小鼠急性酒精性肝损伤的保护效果和作用机制[J]. 食品科学,2022,43(5):103−110. [TE L Y, CHENG B, MA S L, et al. Preventive effect and mechanism of Ganoderma lingzhi polysaccharides on acute alcoholic liver injury in mice[J]. Food Science,2022,43(5):103−110.
TE L Y, CHENG B, MA S L, et al. Preventive effect and mechanism of Ganoderma lingzhi polysaccharides on acute alcoholic liver injury in mice[J]. Food Science, 2022, 43(5): 103-110.
|
[25] |
何秋玲, 张彩平, 桂静, 等. 异麦芽酮糖减少小鼠肝脏脂肪堆积的关键基因筛选与验证[J]. 食品工业科技,2022,43(16):1−8. [HE Q L, ZHANG C P, GUI J, et al. Screening and verification of key genes for isomaltulose reducing liver fat accumulation in mice[J]. Science and Technology of Food Industry,2022,43(16):1−8.
HE Q L, ZHANG C P, GUI J, et al. Screening and verification of key genes for isomaltulose reducing liver fat accumulation in mice[J]. Science and Technology of Food Industry, 2022, 43(16): 1-8.
|
[26] |
张婷婷, 苗玥, 吴恩凯, 等. 普洱茶茶褐素对代谢综合征大鼠生长过程中肝脏差异表达基因的影响[J]. 食品工业科技,2022,43(7):1−9. [ZHANG T T, MIAO Y, WU E K, et al. Effects of theabrownin from puerh tea on differentially expressed genes in the liver of MS rats during growth[J]. Science and Technology of Food Industry,2022,43(7):1−9.
ZHANG T T, MIAO Y, WU E K, et al. Effects of theabrownin from puerh tea on differentially expressed genes in the liver of MS rats during growth[J]. Science and Technology of Food Industry, 2022, 43(7): 1-9.
|
[27] |
丁明孝, 苏都莫日根, 王喜忠, 等. 细胞生物学实验指南, 第二版[M]. 北京: 高等教育出版社, 2013: 173−175
DING M X, SDMRG, WANG X Z, et al. Experiments in cell biology, Second edition[M]. Beijing: Higher education press, 2013: 173−175.
|
[28] |
DEHGHAN E, ZHANG Y, SAREMI B, et al. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway[J]. Nature Communications,2017,8(1):2223. doi: 10.1038/s41467-017-02394-3
|
[29] |
LI P, WANG Z, LAM S M, et al. Rebaudioside a enhances resistance to oxidative stress and extends lifespan and healthspan in Caenorhabditis elegans[J]. Antioxidants,2021,10(2):262. doi: 10.3390/antiox10020262
|
[30] |
檀克勤. 基于秀丽隐杆线虫筛选抗大肠杆菌K88感染的乳酸菌及其作用机制[D]. 广州: 暨南大学, 2019: 60−61
TAN K Q. Screening of lactic acid bacteria against Escherichia coli K88 infection based on Caenorhabditis elegans and its mechanism of action[D]. Guangzhou: Jinan University, 2019: 60−61.
|
[31] |
许吉安. 铁皮石斛中性多糖对秀丽隐杆线虫寿命的影响[D]. 广州: 华南农业大学, 2018: 23−24
XU J A. Effect of Dendrobium officinale polysaccharides on the lifespan of Caenorhabditis elegans and its mechanism[D]. Guangzhou: South China Agricultural University, 2018: 23−24.
|
[32] |
KIM D, LANGMEAD B, SALZBERG S L. HISAT: A fast spliced aligner with low memory requirements[J]. Nature Methods,2015,12(4):357−360. doi: 10.1038/nmeth.3317
|
[33] |
LOVE M, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology,2014,15(12):550. doi: 10.1186/s13059-014-0550-8
|
[34] |
ZHENG Q, WANG X J. GOEAST: A web-based software toolkit for gene ontology enrichment analysis[J]. Nucleic Acids Research,2008,36(Suppl2):W358−W363.
|
[35] |
白娟, 张金富, 张佩熙, 等. 苦瓜皂苷对秀丽隐杆线虫寿命的影响及其机制研究[J]. 食品科学,2022,43(7):165−173. [BAI J, ZHANG J F, ZHANG P X, et al. Effect of saponin from bitter melon (Momordica charantia) on the lifespan of Caenorhabditis elegans and its mechanism[J]. Food Science,2022,43(7):165−173.
BAI J, ZHANG J F, ZHANG P X, et al. Effect of saponin from bitter melon (Momordica charantia) on the lifespan of Caenorhabditis elegans and its mechanism[J]. Food Science, 2022, 43(7): 165-173.
|
[36] |
王晨. 磷酸三(1, 3-二氯-2-丙基)酯诱导秀丽隐杆线虫衰老效应及健康风险分子机制[D]. 上海: 华东理工大学, 2020: 58
WANG C. Molecular mechanisms of aging effects of C. elegans and health risks induced by Tris (1, 3-dichloro-2-propyl) phosphate[D]. Shanghai: East China University of Science and Technology, 2020: 58.
|
[37] |
李博. 藻毒素BMAA在土壤与作物间的迁移累积及其对秀丽隐杆线虫的影响[D]. 南京: 南京农业大学, 2019: 40
LI B. Transfer and bioaccumulation of a cyanobacterial neurotoxin BMAA between soil and crop and its effects on Caenorhabditis elegans[D]. Nanjing: Nanjing Agricultural University, 2019: 40.
|
[38] |
侯殿志, 唐健, 郑博妍, 等. 基于转录组学的绿豆改善肥胖小鼠肝脂肪变性的潜在机制[J]. 食品科学技术学报,2021,39(6):45−52. [HOU D Z, TANG J, ZHENG B Y, et al. Potential mechanisms of mung bean in improvement of hepatic steatosis in obese mice based on transcriptomics[J]. Journal of Food Science and Technology,2021,39(6):45−52.
HOU D Z, TANG J, ZHENG B Y, et al. Potential mechanisms of mung bean in improvement of hepatic steatosis in obese mice based on transcriptomics[J]. Journal of Food Science and Technology, 2021, 39(6): 45-52.
|
[39] |
丛岩懿. 线虫酸性pH胁迫响应机制的初步研究[D]. 北京: 中国科学院大学, 2020: 48
CONG Y Y. A preliminary study on acidic pH stress responses mechanisms of nematodes[D]. Beijing: University of Chinese Academy of Sciences, 2020: 48.
|
[40] |
杨文清. 吩嗪通过组蛋白去乙酰化酶HAD-1抑制线虫天然免疫分子机制的研究[D]. 昆明: 云南大学, 2020: 44
YANG W Q. Molecular mechanism of phenazine inhibits innate immunity of C. elegans by histone deacetylase HAD-1[D]. Kunming: Yunnan University, 2020: 44.
|
[41] |
陈媛丽. 运动延长秀丽隐杆线虫寿命的分子机制研究[D]. 昆明: 云南大学, 2019: 61
CHEN Y L. The mechanism of lifespan extension induced by exercise in C. elegans[D]. Kunming: Yunnan University, 2019: 61.
|
[42] |
杨佳彤. 北细辛对秀丽隐杆线虫生物毒性作用研究[D]. 长春: 吉林农业大学, 2022: 54
YANG J T. Study on the biological toxicity of Asarum heterotropoides to Caenorhabditis elegans[D]. Changchun: Jilin Agricultural University, 2022: 54.
|
[43] |
史强. 基于秀丽隐杆线虫模型研究卵转铁蛋白对机体的影响及作用机制初探[D]. 南昌: 南昌大学, 2022: 51
SHI Q. Effects of egg ovotransferrin on Caenorhabditis elegans and its action mechanism[D]. Nanchang: Nanchang University, 2022: 51.
|
[44] |
MENDE N V, BIRD D M, ALBERT P S, et al. dpy-13: a nematode collagen gene that affects body shape[J]. Cell,1988,55(4):567−576. doi: 10.1016/0092-8674(88)90215-2
|
[45] |
KRAMER J M, JOHNSON J J, EDGAR R S, et al. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis[J]. Cell,1988,55(4):555−565. doi: 10.1016/0092-8674(88)90214-0
|
[46] |
吴长泉. β-烟酰胺单核苷酸在预防脱发或促进毛发生长产品中的应用: CN 202010549459.2[P]
2020-06-16]. [WU C Q. β-Application of nicotinamide mononucleotide in hair loss prevention or hair growth promotion products: CN 202010549459.2[P]. [2020-06-16
|
[47] |
王柯诺. 三类功效成分对真核生物生长和衰老的影响[D]. 杭州: 浙江工商大学, 2021: 18
WANG K N. Effects of three functional components on growth and senescence of eukaryotes[D]. Hangzhou: Zhejiang Gongshang University, 2021: 18.
|
[48] |
王丽鑫. 人参挥发油延长秀丽隐杆线虫寿命及健康寿命的研究[D]. 长春: 吉林大学, 2022: 32
WANG L X. The study on ginseng volatile oil prolongs the lifespan and healthspan of Caenorhabditis elegans[D]. Changchun: Jilin University, 2022: 32.
|
[49] |
金司仪, 洪怡, 卢山, 等. 不同粒度三七醇提物对秀丽隐杆线虫毒性作用的研究[J]. 毒理学杂志,2019,33(3):208−212. [JIN S Y, HONG Y, LU S, et al. Study on toxicity of alcohol extracts of different sizes of notoginseng to C. elegans[J]. Journal of Toxicology,2019,33(3):208−212. doi: 10.16421/j.cnki.1002-3127.2019.03.018
JIN S Y, HONG Y, LU S, et al. Study on toxicity of alcohol extracts of different sizes of Notoginseng to C. elegans[J]. Journal of Toxicology, 2019, 33(3): 208-212. doi: 10.16421/j.cnki.1002-3127.2019.03.018
|
[50] |
童杰文. 红茶改善秀丽隐杆线虫紫外辐射应激作用与机制研究[D]. 长沙: 湖南农业大学, 2017: 17
TONG W J. Black tea improves resistance of Caenorhabditis elegans under radiation stress of ultraviolet[D]. Changsha: Hunan Agricultural University, 2017: 17.
|
[51] |
ZHANG N, JIAO S, JING P. Red cabbage rather than green cabbage increases stress resistance and extends the lifespan of Caenorhabditis elegans[J]. Antioxidants,2021,10(6):930. doi: 10.3390/antiox10060930
|
[52] |
黄贝贝. 秀丽隐杆线虫(Caenorhabditis elegans)col-119基因的表达及功能分析[D]. 武汉: 华中师范大学, 2015: 5−6
HUANG B B. Expression and functional analysis to the gene col-119 of Caenorhabditis elegans[D]. Wuhan: Central China Normal University, 2015: I, 5−6.
|
[53] |
李文娜. 胶原蛋白网络对秀丽隐杆线虫表皮固有免疫的调节的研究[D]. 苏州: 苏州大学, 2016
LI W N. A collagen network regulates innate immunity in C. elegans epidermis[D]. Suzhou: Soochow University, 2016.
|
[54] |
逯召莲. 胶原蛋白基因col-131、col-150、col-121和dpy-5对秀丽隐杆线虫生殖与发育的影响[D]. 兰州: 兰州大学, 2015: 4
LU Z L. The effects of collagen genes col-131, col-150, col-121 and dpy-5 on fertility and development of Caenorhabditis elegans[D]. Lanzhou: Lanzhou University, 2015: 4.
|
[55] |
JOHNSTONE I L. Cuticle collagen genes[J]. Trends in Genetics,2000,16(1):21−27. doi: 10.1016/S0168-9525(99)01857-0
|
[56] |
GAO Y, LU Y, YI J, et al. A genome-wide mRNA expression profile in Caenorhabditis elegans under prolonged exposure to 1750 MHz radiofrequency fields[J]. Plos One,2016,11(1):e0147273. doi: 10.1371/journal.pone.0147273
|
[57] |
PARK Y S, KRAMER J M. The C. elegans sqt-1 and rol-6 collagen genes are coordinately expressed during development, but not at all stages that display mutant phenotypes[J]. Developmental Biology,1994,163(1):112−124. doi: 10.1006/dbio.1994.1127
|
1. |
陈荣荣,李文,吴迪,张忠,鲍大鹏,杨焱,陈万超. 大球盖菇风味肽的制备及其抗氧化活性研究. 食品与生物技术学报. 2024(10): 140-152 .
![]() | |
2. |
白慧,陈若飞,阚欢,郭磊. 响应面法优化美味牛肝菌伞部及柄部多酚氧化酶的提取工艺. 粮食与油脂. 2023(07): 138-141 .
![]() | |
3. |
张沙沙,杨宁,张微思,罗晓莉,周锫,曹晶晶,孙达锋. 兰茂牛肝菌酶解液的制备工艺优化及滋味评价. 现代食品科技. 2023(09): 72-80 .
![]() | |
4. |
张娅俐,洪晶,曹竑,田晓静,王婷婷,张福梅,柏家林,丁功涛,马忠仁,宋礼. 胃蛋白酶水解藏羊血清蛋白工艺研究. 安徽农业科学. 2022(03): 174-177+208 .
![]() | |
5. |
栾俊家,张尚悦,李昂达,李学鹏,励建荣,林洪,王明丽,郭晓华,于建洋,周小敏. 响应面法优化秋刀鱼酶解制备抗氧化活性肽的工艺. 食品工业科技. 2022(05): 172-181 .
![]() | |
6. |
刘子轩,高雅,王文倩,章慧莺,陈海涛,黄典,曾艳. 不同品种食用菌制备热反应肉味基料风味差异分析. 食品科学技术学报. 2022(01): 30-43 .
![]() | |
7. |
唐寅,吕晓帆,王莹,吴亚妮. 龙脑樟精油的化学成分、抗氧化活性和认知改善作用研究. 日用化学工业. 2021(11): 1095-1101 .
![]() | |
8. |
于莹,宿小杰,周德庆,刘楠,孙永,王珊珊. 响应面法优化紫贻贝免疫活性肽的制备工艺. 中国海洋药物. 2021(06): 21-29 .
![]() |