Citation: | ZHANG Kaixin, KONG Xianghui, XU Weiqi, et al. Simultaneous Determination of Epi-Catechins and Their Oxidized Dimers, Gallic Acid and Caffeine in Tea by HPLC[J]. Science and Technology of Food Industry, 2023, 44(19): 366−373. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120093. |
[1] |
桂安辉, 高士伟, 叶飞, 等. 不同产地扁形绿茶的品质成分差异分析[J]. 食品工业科技,2020,41(20):218−223. [GUI A H, GAO S W, YE F, et al. Differential analysis of quality components of flat green tea from different producing areas[J]. Science and Technology of Food Industry,2020,41(20):218−223.
GUI A H, GAO S W, YE F, et al. Differential analysis of quality components of flat green tea from different producing areas[J]. Science and Technology of Food Industry, 2020, 41(20): 218-223.
|
[2] |
XIAO Y, ZHONG K, BAI J R, et al. Insight into effects of isolated Eurotium cristatum from Pingwu Fuzhuan brick tea on the fermentation process and quality characteristics of Fuzhuan brick tea[J]. Journal of the Science of Food and Agriculture,2020,100(9):3598−3607. doi: 10.1002/jsfa.10353
|
[3] |
宋楚君, 范方媛, 龚淑英, 等. 不同产地红茶的滋味特征及主要贡献物质[J]. 中国农业科学,2020,53(2):383−394. [SONG C J, FAN F Y, GONG S Y, et al. Taste characteristic and main contributing compounds of different origin black tea[J]. Scientia Agricultura Sinica,2020,53(2):383−394. doi: 10.3864/j.issn.0578-1752.2020.02.012
SONG C J, FAN F Y, GONG S Y, et al. Taste characteristic and main contributing compounds of different origin black tea[J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394. doi: 10.3864/j.issn.0578-1752.2020.02.012
|
[4] |
WANG K B, LIU F, LIU Z H, et al. Analysis of chemical components in oolong tea in relation to perceived quality[J]. International Journal of Food Science & Technology,2010,45(5):913−920.
|
[5] |
LEI S C, XIE M H, HU B, et al. Effective synthesis of theaflavin-3, 3′-digallate with epigallocatechin-3-O-gallate and epicatechin gallate as substrates by using immobilized pear polyphenol oxidase[J]. International Journal of Biological Macromolecules,2017,94:709−718. doi: 10.1016/j.ijbiomac.2016.10.072
|
[6] |
LI Z Y, FENG C X, LUO X G, et al. Revealing the influence of microbiota on the quality of Pu-erh tea during fermentation process by shotgun metagenomic and metabolomic analysis[J]. Food Microbiology,2018,76:405−415. doi: 10.1016/j.fm.2018.07.001
|
[7] |
CHENG L Z, WANG Y F, ZHANG J R, et al. Dynamic changes of metabolic profile and taste quality during the long-term aging of Qingzhuan tea: The impact of storage age[J]. Food Chemistry,2021,359(15):129953. doi: 10.1016/j.foodchem.2021.129953
|
[8] |
CHOI J Y, KIM E M, KO B J, et al. Production of theasinensin A using laccase as antioxidant and antiaging agent[J]. Biotechnology and Bioprocess Engineering,2022,27(2):253−261. doi: 10.1007/s12257-021-0145-7
|
[9] |
TANAKA T, WATARUMI S, MATSUO Y, et al. Production of theasinensins A and D, epigallocatechin gallate dimers of black tea, by oxidation-reduction dismutation of dehydrotheasinensin A[J]. Tetrahedron,2003,59(40):7939−7947. doi: 10.1016/j.tet.2003.08.025
|
[10] |
ZHANG H, QI R L, MINE Y. The impact of oolong and black tea polyphenols on human health[J]. Food Bioscience,2019,29:55−61. doi: 10.1016/j.fbio.2019.03.009
|
[11] |
刘洪林. 工夫红茶咖啡碱和5种儿茶素组分近红外快速测定方法的研究[J]. 食品工业科技,2016,37(15):316−320. [LIU H L. Research of rapid measurement methods of caffeine and five kinds of catechin components quality ingredients of congou black tea using near infrared spectroscopy[J]. Science and Technology of Food Industry,2016,37(15):316−320.
LIU H L. Research of rapid measurement methods of caffeine and five kinds of catechin components quality ingredients of congou black tea using near infrared spectroscopy[J]. Science and Technology of Food Industry, 2016, 37(15): 316-320.
|
[12] |
WANG K B, CHEN Q C, LIN Y, et al. Separation of catechins and O-methylated (-)-epigallocatechin gallate using polyamide thin-layer chromatography[J]. Journal of Chromatography B,2016,1017−1018:221−225. doi: 10.1016/j.jchromb.2015.11.060
|
[13] |
NEILSON A P, GREEN R J, WOOD K V, et al. High-throughput analysis of catechins and theaflavins by high performance liquid chromatography with diode array detection[J]. Journal of Chromatography A,2006,1132(1-2):132−140. doi: 10.1016/j.chroma.2006.07.059
|
[14] |
ZHANG J Y, CUI H C, JIANG H Y, et al. Rapid determination of theaflavins by HPLC with a new monolithic column[J]. Czech Journal of Food Sciences,2019,37(2):112−119. doi: 10.17221/213/2018-CJFS
|
[15] |
WEI K, WANG L Y, ZHOU J, et al. Comparison of catechins and purine alkaloids in albino and normal green tea cultivars (Camellia sinensis L.) by HPLC[J]. Food Chemistry,2012,130(3):720−724. doi: 10.1016/j.foodchem.2011.07.092
|
[16] |
GANGULY S, G T K, MANTHA S, et al. Simultaneous determination of black tea-derived catechins and theaflavins in tissues of tea consuming animals using ultra-performance liquid-chromatography tandem mass spectrometry[J]. PLoS One,2016,11(10):e0163498. doi: 10.1371/journal.pone.0163498
|
[17] |
SVOBODA P, VLČKOVÁ H, NOVÁKOVÁ L. Development and validation of UHPLC-MS/MS method for determination of eight naturally occurring catechin derivatives in various tea samples and the role of matrix effects[J]. Journal of Pharmaceutical and Biomedical Analysis,2015,114(10):62−70. doi: 10.1016/j.jpba.2015.04.026
|
[18] |
TAO W Q, ZHOU Z G, ZHAO B, et al. Simultaneous determination of eight catechins and four theaflavins in green, black and oolong tea using new HPLC-MS-MS method[J]. Journal of Pharmaceutical and Biomedical Analysis,2016,131(30):140−145. doi: 10.1016/j.jpba.2016.08.020
|
[19] |
WANG L, YAN T, ZHANG K X, et al. A sensitive UPLC-MS/MS method for simultaneous determination of polyphenols and theaflavins in rat plasma: Application to a pharmacokinetic study of Da Hong Pao tea[J]. Biomedical Chromatography,2019,33(4):e4470. doi: 10.1002/bmc.4470
|
[20] |
TANAKA T, WATARUMI S, FUJIEDA M, et al. New black tea polyphenol having N-ethyl-2-pyrrolidinone moiety derived from tea amino acid theanine: Isolation, characterization and partial synthesis[J]. Food Chemistry,2005,93(1):81−87. doi: 10.1016/j.foodchem.2004.09.013
|
[21] |
TAO S N, CHEN G J, XU W Q, et al. Preparation of theasinensin A and theasinensin B and exploration of their inhibitory mechanism on α-glucosidase[J]. Food Function,2020,11(4):3527−3538. doi: 10.1039/C9FO03054A
|
[22] |
薛金金, 江和源, 龙丹, 等. HPLC法同时测定茶叶中聚酯型儿茶素和茶黄素[J]. 中国食品学报,2014,14(5):237−243. [XUE J J, JIANG H Y, LONG D, et al. Simultaneous determination of theasinensins and theaflavins content in tea by HPLC[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(5):237−243.
XUE J J, JIANG H Y, LONG D, et al. Simultaneous determination of theasinensins and theaflavins content in tea by HPLC[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(5): 237-243.
|
[23] |
AN T T, CHEN M X, ZU Z Q, et al. Untargeted and targeted metabolomics reveal changes in the chemical constituents of instant dark tea during liquid-state fermentation by Eurotium cristatum[J]. Food Research International,2021,148:110623. doi: 10.1016/j.foodres.2021.110623
|
[24] |
MATSUO Y, TANAKA T, KOUNO I. A new mechanism for oxidation of epigallocatechin and production of benzotropolone pigments[J]. Tetrahedron,2006,62(20):4774−4783. doi: 10.1016/j.tet.2006.03.021
|
[25] |
XIAO Y, LI M Y, LIU Y, et al. The effect of Eurotium cristatum (MF800948) fermentation on the quality of autumn green tea[J]. Food Chemistry,2021,358(1):129848. doi: 10.1016/j.foodchem.2021.129848
|
[26] |
ZHU M Z, LI N, ZHOU F, et al. Microbial bioconversion of the chemical components in dark tea[J]. Food Chemistry,2020,312(15):126043. doi: 10.1016/j.foodchem.2019.126043
|
[27] |
XUE J J, LIU P P, GUO G Y, et al. Profiling of dynamic changes in non-volatile metabolites of shaken black tea during the manufacturing process using targeted and non-targeted metabolomics analysis[J]. LWT-Food Science and Technology,2022,156(15):113010. doi: 10.1016/j.lwt.2021.113010
|
[28] |
王伟伟, 乐婷, 杨刘艳, 等. 骏眉工艺红茶化学成分及其抗氧化活性研究[J]. 食品安全质量检测学报,2022,13(10):3320−3327. [WANG W W, LE T, YANG L Y, et al. Study on the chemical constituents and antioxidant activity of black tea with Junmei technology[J]. Journal of Food Safety and Quality Inspection,2022,13(10):3320−3327.
WANG W W, LE T, YANG L Y, et al. Study on the chemical constituents and antioxidant activity of black tea with Junmei technology[J]. Journal of Food Safety and Quality Inspection, 2022, 13(10): 3320-3327.
|
[29] |
HUANG Y Y, XIAO X D, CONG L, et al. A fermented tea with high levels of gallic acid processed by anaerobic solid-state fermentation[J]. LWT - Food Science and Technology,2016,71:260−267. doi: 10.1016/j.lwt.2016.03.047
|
[30] |
MARUYAMA K, KIHARA-NEGISHI F, OHKURA N, et al. Simultaneous determination of catechins and caffeine in green tea-based beverages and foods for specified health uses[J]. Food and Nutrition Sciences,2017,8(3):316−325. doi: 10.4236/fns.2017.83021
|
[31] |
LIU L, SHI J J, YUAN Y H, et al. Changes in the metabolite composition and enzyme activity of fermented tea during processing[J]. Food Research International,2022,158:111428. doi: 10.1016/j.foodres.2022.111428
|
1. |
王芳,刘洪存,陆淑雯,杨立芳,黄盈,姜明国,孟娟. HPLC法测定云芝菌发酵茶中9种活性成分及抗氧化活性研究. 食品工业科技. 2024(18): 258-264 .
![]() |