HAN Aodi, LI Xinlei, KONG Xiangrui, et al. Study on Characteristic Metabolites of Green Tea from a New Chlorotic Tea Cultivar ‘Ming Guan’[J]. Science and Technology of Food Industry, 2023, 44(17): 351−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120052.
Citation: HAN Aodi, LI Xinlei, KONG Xiangrui, et al. Study on Characteristic Metabolites of Green Tea from a New Chlorotic Tea Cultivar ‘Ming Guan’[J]. Science and Technology of Food Industry, 2023, 44(17): 351−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120052.

Study on Characteristic Metabolites of Green Tea from a New Chlorotic Tea Cultivar ‘Ming Guan’

More Information
  • Received Date: December 07, 2022
  • Available Online: July 02, 2023
  • ‘Ming guan’ is a new chlorotic tea cultivar bred from the descendants of Bai jiguan, in order to explore the characteristic quality of aroma and taste of Ming guan green tea, this study conducted sensory quality evaluation and metabomic analysis on green tea made from Ming guan and Fuding dabai, to find the characteristic metabolic components of Ming guan green tea. The results showed that the aroma of Ming guan green tea was tender, with a long-lasting floral aroma and a mellow taste; the aroma of Fuding dabai green tea was clear and the taste was mellow. Hexanoate was the aroma group with the highest relative content in Ming guan green tea, accounted for 6.57% of the total content of aroma components. Other volatile components such as geraniol, (Z)-3-hexenyl hexanoate, hotrienol, nerolidol, (Z)-2-hexenyl hexanoate, α-cedrene, α-farnesene, hexenyl butyrate and laurene were significantly higher than those of Fuding dabai green tea (P<0.05). The non-volatile components of Ming guan green tea were significantly different from Fuding dabai green tea, among which. The contents of ester type catechins (ECG), anthocyanidin,some flavonols or flavone glycosides (quercetin 3-O-(2-o-rhamnosyl) rutinoside, quercetin 3-O-(6"-p-coumaryl) galactoside etc), phenolic acids com, ounds in Ming guan green tea were generally higher than those in Fuding dabai green tea. Non-gallated catechins (C, EC) showed no significant difference between the two green teas, and some flavonols or flavone glycosides (quercetin 3-O- neohesperidoside, apigenin-6, 8-di-c-glucoside etc), amino acids and other compounds were lower than those of Fuding dabai green tea. This study provides a theoretical basis for the quality study of the new albino tea variety of Ming guan.
  • [1]
    WEI C, HUA Y, WANG S, et al. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(18):E4151−E4158.
    [2]
    FAN G, DO N, LAN T, et al. Differential accumulation of aroma compounds in normal green and albino-induced yellow tea (camellia sinensis) leaves[J]. Molecules (Basel, Switzerland),2018,23(10):2677. doi: 10.3390/molecules23102677
    [3]
    周汉琛, 刘亚芹, 雷攀登. 不同白化期的‘黄山白茶’代谢物差异分析[J]. 热带亚热带植物学报,2022,30(2):187−194. [ZHOU H C, LIU Y Q, LEI P D. Metabolites profiling of green tea processed from ‘Huangshan baicha No. 1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany,2022,30(2):187−194.

    ZHOU H C, LIU Y Q, LEI P D. Metabolites profiling of green tea processed from ‘Huangshan baicha No. 1’ cultivar at different albino stages[J]. Journal of Tropical and Subtropical Botany, 2022, 30(2): 187-194
    [4]
    陈志辉, 林郑和, 游小妹, 等. 茶树品种‘白鸡冠’叶色性状遗传特性研究[J]. 茶叶学报,2019,60(3):99−105. [CHEN Z H, LIN Z HE, YOU X M, et al. Study on genetic characteristics of leaf color characters of tea cultivar 'Baijiguan'[J]. Acta Tea Sinica,2019,60(3):99−105. doi: 10.3969/j.issn.1007-4872.2019.03.002

    CHEN Z H, LIN Z HE, YOU X M, et al. Study on genetic characteristics of leaf color characters of tea cultivar 'Baijiguan'[J]. Acta Tea Sinica, 2019, 60(3): 99-105. doi: 10.3969/j.issn.1007-4872.2019.03.002
    [5]
    王松琳. 茶树黄化品种‘白鸡冠’色素及游离氨基酸特异性状的QTL定位[D]. 杭州: 中国农业科学院, 2018

    WANG S L. QTL mapping of specific traits of pigment and free amino acid in chlorotic tea cultivar 'Baijiguan'[D]. Chinese Academy of Agricultural Sciences, 2018.
    [6]
    陈林, 林清霞, 张应根, 等. 不同风味类型铁观音乌龙茶香气组成化学模式识别研究[J]. 茶叶科学,2018,38(3):253−262. [CHEN L, LIN Q X, ZHANG Y G, et al. Study on chemical pattern recognition of aroma composition of tieguanyin oolong tea with different flavor types[J]. Journal of Tea Science,2018,38(3):253−262. doi: 10.3969/j.issn.1000-369X.2018.03.005

    CHEN L, LIN Q X, ZHANG Y G, et al. Study on chemical pattern recognition of aroma composition of tieguanyin oolong tea with different flavor types[J]. Journal of Tea Science, 2018, 38 (3): 253-262. doi: 10.3969/j.issn.1000-369X.2018.03.005
    [7]
    YANG Z Y, BALDERMANN S, WATANABE N. Recent studies of the volatile compounds in tea[J]. Food Research International,2013,53(2):585−599. doi: 10.1016/j.foodres.2013.02.011
    [8]
    张 翔, 陈学娟, 杜 晓, 等. 蒙顶甘露茶滋味特征及主要呈味成 分贡献率分析[J]. 云南大学学报( 自然科学版),2020,42(4):783−791. [ZHANG X, CHEN X J, DU X, et al. Analysis on the taste characteristics and contribution rate of main flavor components of mengding mandew tea[J]. Journal of Yunnan University (Natural Science Edition),2020,42(4):783−791.

    ZHANG X, CHEN X J, DU X, et al. Analysis on the taste characteristics and contribution rate of main flavor components of mengding mandew tea[J]. Journal of Yunnan University (Natural Science Edition), 2020, 42(4): 783-791
    [9]
    谢娇枚, 罗敏燕, 刘易凡, 等. 陈年祁门红茶品质分析[J]. 湖南农业科学,2012(21):100−102. [XIE J M, LUO M Y, LIU Y F, et al. Quality analysis of aged keemun black tea[J]. Hunan Agricultural Sciences,2012(21):100−102.

    XIE J M, LUO M Y, LIU Y F, et al. Quality analysis of aged keemun black tea[J]. Hunan Agricultural Sciences, 2012(21): 100-102.
    [10]
    李鑫磊, 俞晓敏, 林军等. 基于非靶向代谢组学的白茶与绿茶、乌龙茶和红茶代谢产物特征比较[J]. 食品科学,2020,41(12):197−203. [LI X L, YU X M, LIN J, et al. Comparison of metabolite profiles of white tea with green, oolong and black teas based on non-targeted metabolomics[J]. Food Science,2020,41(12):197−203.

    LI X L, YU X M, LIN J, et al. Comparison of metabolite profiles of white tea with green, oolong and black teas based on non-targeted metabolomics[J]. Food Science, 2020, 41(12): 197-203.
    [11]
    FENG L, GAO M J, HOUR Y, et al. Determination of quality constituents in the young leaves of albino tea cultivars[J]. Food Chemistry,2014(155):98−104.
    [12]
    丁立孝, 刘冉霞, 梁青, 等. 日照白毫乌龙茶香气成分的研究[J]. 食品科技,2015,40(4):141−145. [DING L X, LIU R X, LIANG Q, et al. Aroma constituents of Rizhao pekoe oolong tea[J]. Food Science and Technology,2015,40(4):141−145.

    DING L X, LIU R X, LIANG Q, et al. Aroma constituents of Rizhao pekoe oolong tea[J]. Food Science and Technology, 2015, 40(4): 141-145.
    [13]
    贺群, 黄旦益, 卢翠, 等. 适制绿茶与红绿茶兼宜品种挥发性香气组分及其相对含量差异研究[J]. 西北农业学报,2017,26(9):1363−1378. [HE Q, HUANG D Y, LU C, et al. Comparative analysis on the difference of volatile aroma components and its relative content difference in fresh leaves among tea varieties suitable for green tea and for both black tea and green tea[J]. Acta Agriculturae Agriculturae Boreali-occidentalis Sinica,2017,26(9):1363−1378.

    HE Q, HUANG D Y, LU C, et al. Comparative analysis on the difference of volatile aroma components and its relative content difference in fresh leaves among tea varieties suitable for green tea and for both black tea and green tea[J]. Acta Agriculturae Agriculturae Boreali-occidentalis Sinica, 2017, 26(9): 1363-1378.
    [14]
    徐元骏, 何靓, 贾玲燕, 等. 不同地区及特殊品种红茶香气的差异性[J]. 浙江大学学报(农业与生命科学版),2015,41(3):323−330. [XU Y J, HE L, JIA L Y, et al. Aroma difference of black tea in different regions and special varieties[J]. Journal of Zhejiang University (Agriculture & Life Sciences),2015,41(3):323−330.

    XU Y J, HE L, JIA L Y, et al. Aroma difference of black tea in different regions and special varieties[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2015, 41(3): 323-330.
    [15]
    徐春晖, 王远兴. 基于UPLC-QTOF-MS结合非靶向代谢组学鉴别3种江西名茶[J]. 食品科学,2022,43(2):316−323. [XU CH, WANG Y X. Non-targeted metabolomics based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry for discrimination of three Jiangxi famous teas[J]. Food Science,2022,43(2):316−323.

    XU CH, WANG Y X. Non-targeted metabolomics based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry for discrimination of three Jiangxi famous teas[J]. Food Science, 2022, 43(2): 316−323.
    [16]
    NISHIMURA T, KATO H, TO H. food reviews international taste of free amino acids and peptides taste of free amino acids and peptides[J]. Food Reviews International,1988,4(2):175−194. doi: 10.1080/87559128809540828
    [17]
    郭丽, 杜正花, 姚丽鸿, 等. 铁观音乌龙茶和红茶的香气化学特征分析[J]. 食品科学,2021,42(10):255−261. [GUO L, DU Z H, YAO L H, et al. Analysis of aroma chemical characteristics of tieguanyin oolong tea and black tea[J]. Food Science,2021,42(10):255−261.

    GUO L, DU Z H, YAO L H, et al. Analysis of aroma chemical characteristics of tieguanyin oolong tea and black tea[J]. Food Science, 2021, 42(10): 255-261
    [18]
    LINGCJFF C. Analysis of aroma components of Hainan passionfruit[J]. Flavour Fragrance Cosmetics 2001.17(5) : 88−89
    [19]
    陈慧, 杨丽玲, 陈金华, 等. 控温渥堆对黑毛茶香气品质的影响[J]. 茶叶科学,2022,42(5):717−730. [CHEN H, YANG L L, CHEN J H, et al. Effect of temperature-controlled on Pile-fermentation on aroma quality of primary dark tea[J]. Journal of Tea Science,2022,42(5):717−730.

    CHEN H, YANG L L, CHEN J H, et al. Effect of temperature-controlled on Pile-fermentation on aroma quality of primary dark tea[J]. Journal of Tea Science, 202, 42(5): 717−730.
    [20]
    安会敏, 欧行畅, 熊一帆, 等. 茉莉花茶特征香气成分研究[J]. 茶叶科学,2020,40(2):225−237. [AN H M, OU X C, XIONG Y F, et al. Study on characteristic aroma components of jasmine tea[J]. Journal of Tea Science,2020,40(2):225−237.

    AN H M, OU X C, XIONG Y F, et al. Study on characteristic aroma components of jasmine tea[J]. Journal of Tea Science, 2020, 40(2): 225-237.
    [21]
    刘盼盼, 郑鹏程, 龚自明, 等. 橘红茶香气特征及风味成分分析[J]. 食品科学,2021,42(8):198−205. [LIU P P, ZHENG P C, GONG Z M, et al. Analysis of aroma characteristics and volatile components of Juhong Tea, manufactured from black tea with added citrus peel[J]. Food Science,2021,42(8):198−205.

    LIU P P, ZHENG P C, GONG Z M, et al. Analysis of aroma characteristics and volatile components of Juhong Tea, manufactured from black tea with added citrus peel[J]. Food Science, 2021, 42(08): 198-205.
    [22]
    吴婷, 邓秀娟, 李沅达等. 云茶香1号不同萎凋工艺白茶的化学品质研究[J]. 食品安全质量检测学报,2021,12(24):9530−9538. [WU T, DENG X J, LI Y D, et al. Study on chemical quality of white tea with different withering processes in Yuncha Xiang No. 1[J]. Journal of Food Safety and Quality Testing,2021,12(24):9530−9538.

    WU T, DENG XIUJUAN, LI YUANDA et al. Study on chemical quality of white tea with different withering processes in Yuncha Xiang No. 1[J]. Journal of Food Safety and Quality Testing, 2021, 12(24): 9530-9538.
    [23]
    田甜, 韦锦坚, 文金华, 等. 不同季节凌云白毫绿茶的香气成分差异分析[J]. 食品科学,2020,41(22):252−259. [TIAN T, WEI J J, WEN J H, et al. Analysis of aroma components of lingyun pekoe green tea in different seasons[J]. Food Science,2020,41(22):252−259.

    TIAN T, WEI J J, WEN J H, et al. Analysis of aroma components of lingyun pekoe green tea in different seasons[J]. Food Science, 2020, 41(22): 252-259.
    [24]
    LIU J W, ZHANG Q F, LIU M Y, et al. Metabolomic analyses reveal distinct change of metabolites and quality of green tea during the short duration of a single spring season[J]. Journal of Agricultural and Food Chemistry,2016,64(16):3302−3309. doi: 10.1021/acs.jafc.6b00404
    [25]
    杨晨, 戴伟东, 吕美玲, 等. 基于UHPLC-Q-TOF/MS的不同产地普洱生茶化学成分差异研究[J]. 茶叶科学,2017,37(6):605−615. [YANG C, DAI W D, LV M L, et al. Study on chemical constituents of pu-erh teas from different areas by UHPLC-Q-TOF/MS[J]. Journal of Tea Science,2017,37(6):605−615.

    YANG C, DAI W D, LV M L, et al. Study on chemical constituents of pu-erh teas from different areas by UHPLC-Q-TOF/MS[J]. Journal of Tea Science, 2017, 37(6): 605-615.
    [26]
    ZHANG L, CAO Q Q, GRANATO D, et al. Association between chemistry and taste of tea: A review[J]. Trends in Food Science & Technology,2020,101:139−149.
    [27]
    刘阳, 陈根生, 许勇泉, 等. 冲泡过程中西湖龙井茶黄酮苷类浸出特性及滋味贡献分析[J]. 茶叶科学,2015,35(3):217−224. [LIU Y, CHEN G S, XU Y Q, et al. Extracting characteristics of flavone and flavonol glycosides in Xihulongjing tea under different brewing conditions and their contribution to tea taste[J]. Journal of Tea Science,2015,35(3):217−224.

    LIU Y, CHEN G S, XU Y Q, et al. Extracting characteristics of flavone and flavonol glycosides in Xihulongjing tea under different brewing conditions and their contribution to tea taste[J]. Journal of Tea Science, 2015, 35(3): 217-224
    [28]
    GUO X Y, LV Y Q, YE Y, et al. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves[J]. Food Chemistry,2021,33(2):339.
    [29]
    高健健, 陈丹, 彭佳堃, 等. 基于代谢组学的云南白茶与福鼎白茶化学成分比较分析[J]. 茶叶科学,2002,42(5):623−637. [GAO J J, CHEN D, PENG J K, et al. Comparison on chemical components of Yunnan and Fuding white tea based on metabolomics approach[J]. Journal of Tea Science,2002,42(5):623−637.

    GAO J J, CHEN D, PENG J K, et al. Comparison on chemical components of Yunnan and Fuding white tea based on metabolomics approach[J]. Journal of Tea Science, 2002, 42(5): 623-637
    [30]
    JABEEN S, ALAM S, SALEEM M, et al. Withering timings affect the total free amino acids and mineral contents of tea leaves during black tea manufacturing[J]. Arabian Journal of Chemistry,2019,12(8):2411−2417. doi: 10.1016/j.arabjc.2015.03.011
    [31]
    YU Z M, YANG Z Y. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function[J]. Critical Reviews in Food Science and Nutrition,2020,60(5):844−858. doi: 10.1080/10408398.2018.1552245
    [32]
    王梦琪, 朱荫, 张悦, 等. “清香”与“栗香”绿茶中非挥发性化学成分的差异分析[J]. 食品科学,2021,42(14):151−158. [WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of differential non-volatile chemical compounds between green teas with refreshing aroma and chestnut-like aroma[J]. Food Science,2021,42(14):151−158. doi: 10.7506/spkx1002-6630-20200629-373

    WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of differential non-volatile chemical compounds between green teas with refreshing aroma and chestnut-like aroma[J]. Food Science, 2021, 42(14): 151-158. doi: 10.7506/spkx1002-6630-20200629-373
    [33]
    KANEKO S, KUMAZAWA K, MASUDA H, et al. Molecular and sensory studies on the umami taste of japanese green tea[J]. Journal of Agricultural and Food Chemistry 2006, 54(7): 2688-2694.
    [34]
    龚雨顺, 戴申, 黄建安, 等. 茶叶的抗衰老作用[J]. 中国茶叶,2019,41(8):6−11. [GONG Y S, DAI S, HUANG J A, et al. Anti-aging effect of tea[J]. China Tea,2019,41(8):6−11.

    GONG Y S, DAI S, HUANG J A, et al. Anti-aging effect of tea[J]. China Tea, 2019, 41(8): 6-11.
  • Related Articles

    [1]ZHOU Wan-qing, NESTERENKO Pavel N, LIN Yang, JIN Xiao-ling, HUANG Jin-fei, YE Ming-li, CHEN Mei-lan. Determination by Ion Chromatography and Distribution Characteristics of Main Cations in Three Drinking Waters[J]. Science and Technology of Food Industry, 2019, 40(24): 219-224. DOI: 10.13386/j.issn1002-0306.2019.24.036
    [2]ZHANG Shao-hua, YING Lu, ZHANG Shu-fen, SHI Lin-lin, KE Jian-jun, SU Yu-ting, XING Jia-li. Simultaneous Determination of Thiocyanate and Perchlorate in Vegetables by Ultrasonic Assisted Extraction of Hot Water-Ion Chromatography[J]. Science and Technology of Food Industry, 2019, 40(7): 224-227. DOI: 10.13386/j.issn1002-0306.2019.07.038
    [3]SHEN Song-li, LIN Zhi-wei, CHEN Mei-lan. Determination of organic acid and anion in noni powder by ion chromatography[J]. Science and Technology of Food Industry, 2017, (03): 305-308. DOI: 10.13386/j.issn1002-0306.2017.03.050
    [4]YU Lu, ZHOU Guang-ming, SHEN Jie, YU Yan-li. Determination of glucose,sucrose and fructose in 10 kinds of tropical fruits by ion chromatography[J]. Science and Technology of Food Industry, 2016, (22): 94-98. DOI: 10.13386/j.issn1002-0306.2016.22.010
    [5]HAN Ting-ting, CUI He, DUAN Xiao-juan, SONG Tian, JI Hong-wei, LI Hui-xin, CAI Feng, ZHU Qian-lin. Determination of four anions in alcohol and methanol by ion chromatography[J]. Science and Technology of Food Industry, 2016, (11): 284-288. DOI: 10.13386/j.issn1002-0306.2016.11.050
    [6]ZHANG Xian-an, ZENG Shi-qiao, LI Guan-xin, XU Hong-yong, YIN Zhao-ping, XU Yu-cheng. Simultaneous determination of ten mental cations in water by single column ion chromatography[J]. Science and Technology of Food Industry, 2014, (01): 286-288. DOI: 10.13386/j.issn1002-0306.2014.01.027
    [7]Determination of sucrose, glucose and lactose in toffee by ion chromatography[J]. Science and Technology of Food Industry, 2012, (19): 309-311. DOI: 10.13386/j.issn1002-0306.2012.19.016
    [8]Determination of polyphosphates in aquatic products by alkali liquor extraction-ion chromatography[J]. Science and Technology of Food Industry, 2012, (19): 301-303. DOI: 10.13386/j.issn1002-0306.2012.19.014
    [9]Determination of sulfur dioxide in wine by solid phase extraction-ion chromatography[J]. Science and Technology of Food Industry, 2012, (17): 330-332. DOI: 10.13386/j.issn1002-0306.2012.17.016
    [10]Uncertainty analysis of determination of fluoride and bromide in tea by ion chromatography[J]. Science and Technology of Food Industry, 2012, (17): 322-324. DOI: 10.13386/j.issn1002-0306.2012.17.015
  • Cited by

    Periodical cited type(6)

    1. 代桂丽,张超锋. 反相高效液相色谱-脉冲安培检测法对硫酸新霉素的药物分析研究. 化学与粘合. 2024(02): 200-205 .
    2. 苗晶,宋戈,朱琳,王树奇,李茜,杨文敏. 离子交换色谱法测定调制乳粉和固体饮料中异麦芽糖、异麦芽三糖和潘糖. 中国乳品工业. 2023(05): 50-54 .
    3. 颉东妹,王宁丽,刘笑笑,吴福祥,裴栋,郭玫,邸多隆. 微波消解-离子色谱法测定枸杞多糖的含量及组成. 食品安全质量检测学报. 2022(04): 1065-1072 .
    4. 陈修红,冀鹏,何国亮,夏然,李祖明,刘佳. 离子色谱-脉冲安培法同时测定牛肉水解产物中6种糖组分的含量. 食品工业科技. 2022(11): 267-275 . 本站查看
    5. 胡佳偲,孙晨,张昊,霍宗利. 高效液相色谱法同时测定全血中的原卟啉和锌原卟啉. 江苏预防医学. 2022(03): 272-276 .
    6. 梁静. 离子色谱在食品检测中的应用. 食品安全导刊. 2021(29): 152-153 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (132) PDF downloads (27) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return