SUN Yi, QIAO Xuguang, ZHENG Zhenjia, et al. Preparation and Structural Characterization of Garlic Polysaccharide Liposomes[J]. Science and Technology of Food Industry, 2023, 44(14): 9−15. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120050.
Citation: SUN Yi, QIAO Xuguang, ZHENG Zhenjia, et al. Preparation and Structural Characterization of Garlic Polysaccharide Liposomes[J]. Science and Technology of Food Industry, 2023, 44(14): 9−15. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120050.

Preparation and Structural Characterization of Garlic Polysaccharide Liposomes

More Information
  • Received Date: December 07, 2022
  • Available Online: May 20, 2023
  • In this study, a novel polysaccharide liposome was prepared using garlic polysaccharides, soybean lecithin and cholesterol and structurally characterized. The optimal preparation conditions of garlic polysaccharide liposomes were determined by single-factor and response surface tests using the film-material ratio, lipid-drug ratio and ultrasonic time as factors and the encapsulation efficiency as response values. The obtained liposomes were characterized in terms of micromorphology, particle size, UV spectrum, IR spectrum and stability. The results showed that the optimal preparation conditions of garlic polysaccharide liposomes were as follows: Film-material ratio of 4:1, lipid-drug ratio of 24:1, ultrasonic time of 14 min, with the maximum encapsulation efficiency of 61.00%±0.73%. The obtained liposomes appeared as spherical vesicles with uniform dispersion and good stability. Their particle size, polymer dispersity index and zeta potential were 213.50±1.85 nm, 0.187±0.005 and −21.07±1.27 mV, respectively. UV and IR spectra confirmed that garlic polysaccharides were successfully encapsulated into the lipid material through electrostatic interactions, without the formation of new chemical bonds. After 28 days of storage at 4 ℃, the particle size of garlic polysaccharide liposomes increased from 211.13±0.54 nm to 225.70±0.65 nm, the PDI increased from 0.187±0.003 to 0.236±0.001, and the encapsulation efficiency decreased from 60.96%±0.32% to 56.97%±0.74%, exhibiting a relative stability. Therefore, the garlic polysaccharide liposomes prepared in this study had high encapsulation efficiency, small particle size, good dispersion and high stability, which could provide a reference for the development of garlic polysaccharide derivatives.
  • [1]
    赵辰, 沙如意, 张黎明, 等. 基于响应面法的水环境-酶法辅助提取大蒜多糖及其抗油脂氧化效果研究[J]. 食品工业科技,2019,40(20):180−187. [ZHAO Chen, SHA Ruyi, ZHANG Liming, et al. Optimization of enzyme-assisted extraction conditions in water for garlic polysaccharide by response surface methodology and its antioxidant activity against oil[J]. Science and Technology of Food Industry,2019,40(20):180−187.

    ZHAO Chen, SHA Ruyi, ZHANG Liming, et al. Optimization of enzyme-assisted extraction conditions in water for garlic polysaccharide by response surface methodology and its antioxidant activity against oil[J]. Science and Technology of Food Industry, 2019, 40(20): 180-187.
    [2]
    叶迎, 许京, 王瑞海, 等. 大蒜多糖近10年在化学、工艺质量、药理及应用方面的总结[J]. 中国实验方剂学杂志,2017,23(10):227−234. [YE Ying, XU Jing, WANG Ruihai, et al. Research progress of garlic polysaccharide in chemical, process quality, pharmacology and application in past decade[J]. Chinese Journal of Experimental Traditional,2017,23(10):227−234.

    YE Ying, XU Jing, WANG Ruihai, et al. Research progress of garlic polysaccharide in chemical, process quality, pharmacology and application in past decade[J]. Chinese Journal of Experimental Traditional, 2017, 23(10): 227-234.
    [3]
    KUMARI N, KUMAR M, RADHA, et al. Onion and garlic polysaccharides: A review on extraction, characterization, bioactivity, and modifications[J]. International Journal of Biological Macromolecules,2022,219:1047−1061. doi: 10.1016/j.ijbiomac.2022.07.163
    [4]
    QIU Zhichang, QIAO Yiteng, ZHANG Bin, et al. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships[J]. Comprehensive Reviews in Food Science and Food Safety,2022,21(4):3033−3095. doi: 10.1111/1541-4337.12972
    [5]
    JIANG Xinyang, LIANG Jinyue, JIANG Siyuan, et al. Garlic polysaccharides: A review on their extraction, isolation, structural characteristics, and bioactivities[J]. Carbohydrate Research,2022,518:108599. doi: 10.1016/j.carres.2022.108599
    [6]
    YUAN Ye, CHE Lihe, QI Chong, et al. Protective effects of polysaccharides on hepatic injury: A review[J]. International Journal of Biological Macromolecules,2019,141(C):822−830.
    [7]
    黄雪松, 李颖思, 石思迷. 大蒜多糖功能性质的研究[J]. 现代食品科技,2009,25(6):588−591. [HUANG Xuesong, LI Yingsi, SHI Simi. Study of functions and properties of garlic polysaccharide[J]. Modern Food Science and Technology,2009,25(6):588−591.

    HUANG Xuesong, LI Yingsi, SHI Simi. Study of functions and properties of garlic polysaccharide[J]. Modern Food Science and Technology, 2009, 25(6): 588-591.
    [8]
    DYMEK M, SIKORA E. Liposomes as biocompatible and smart delivery systems–the current state[J]. Advances in Colloid and Interface Science,2022,309:102757. doi: 10.1016/j.cis.2022.102757
    [9]
    ZHANG Weimin, MA Wuren, ZHANG Jing, et al. The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells[J]. International Journal of Biological Macromolecules, 2017, 105(Pt 1): 852-861.
    [10]
    BARROSO L, VIEGAS C, VIEIRA J, et al. Lipid-based carriers for food ingredients delivery[J]. Journal of Food Engineering,2021,295:110451. doi: 10.1016/j.jfoodeng.2020.110451
    [11]
    ESPOSTO B S, JAUREGI P, TAPIA-BLÁCIDO D R, et al. Liposomes vs. chitosomes: Encapsulating food bioactives[J]. Trends in Food Science & Technology,2021,108:40−48.
    [12]
    SEBAALY C, JRAIJ A, FESSI H, et al. Preparation and characterization of clove essential oil-loaded liposomes[J]. Food Chemistry,2015,178(Jul.1):52−62.
    [13]
    REHMAN A, JAFARI S M, TONG Q Y, et al. Drug nanodelivery systems based on natural polysaccharides against different diseases[J]. Advances in Colloid and Interface Science,2020,284:102251. doi: 10.1016/j.cis.2020.102251
    [14]
    LI Mingyuan, DU Chunyang, GUO Na, et al. Composition design and medical application of liposomes[J]. European Journal of Medicinal Chemistry,2019,164:640−653. doi: 10.1016/j.ejmech.2019.01.007
    [15]
    ALLEN T M, CULLIS P R. Liposomal drug delivery systems: From concept to clinical applications[J]. Advanced Drug Delivery Reviews,2013,65(1):36−48. doi: 10.1016/j.addr.2012.09.037
    [16]
    GAO Huan, FAN Yunpeng, WANG Deyun, et al. Optimization on preparation condition of epimedium polysaccharide liposome and evaluation of its adjuvant activity[J]. International Journal of Biological Macromolecules,2012,50(1):207−213. doi: 10.1016/j.ijbiomac.2011.10.021
    [17]
    BO Ruonan, LIU Zhenguang, ZHANG Jing, et al. Mechanism of Lycium barbarum polysaccharides liposomes on activating murine dendritic cells[J]. Carbohydrate Polymers,2019,205(1):540−549.
    [18]
    FAN Yunpeng, MA Xia, MA Lin, et al. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus[J]. Carbohydrate Polymers,2016,135:110−120. doi: 10.1016/j.carbpol.2015.08.089
    [19]
    ZHANG Weini, ZHANG Mengxin, CHENG Anyi, et al. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea)[J]. Fish and Shellfish Immunology,2020,100:126−136. doi: 10.1016/j.fsi.2020.03.004
    [20]
    阚晓月. 葛根多糖降血脂活性及其脂质体的制备研究[D]. 镇江: 江苏大学, 2019.

    KAN Xiaoyue. Study on hypolipidemic activity and liposomal formulation of Pueraria lobata polysaccharides[D]. Zhenjiang: Jiangsu University, 2019.
    [21]
    崔亥迪. 大蒜多糖对低酰结冷胶的改良作用及应用[D]. 泰安: 山东农业大学, 2021.

    CUI Haidi. Improvement effect and application of garlic polysaccharide on low-acyl gellan gum[D]. Taian: Shandong Agricultural University, 2021.
    [22]
    WU Yi, YI Lei, LI Entao, et al. Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2017,102:68−75.
    [23]
    WU Yujie, MOU Bolin, SONG Shuang, et al. Curcumin-loaded liposomes prepared from bovine milk and krill phospholipids: Effects of chemical composition on storage stability, in-vitro digestibility and anti-hyperglycemic properties[J]. Food Research International,2020,136:109301. doi: 10.1016/j.foodres.2020.109301
    [24]
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [25]
    蔡婧婧. 生姜姜黄素纯化、脂质体制备及对小鼠溃疡性结肠炎治疗的研究[D]. 泰安: 山东农业大学, 2020.

    CAI Jingjing. Studies on purification of curcumin, preparation of liposomes and treatment of ulcerative colitis in mice[D]. Taian: Shandong Agricultural University, 2020.
    [26]
    邰克东, 赵苏茂, 杨紫恒, 等. 高压均质对脂质体囊泡特性和稳定性的影响[J]. 食品科学,2019,40(17):169−177. [TAI Kedong, ZHAO Sumao, YANG Ziheng, et al. Effect of high-pressure homogenization on vesicle characteristics and stability of liposomes[J]. Food Science,2019,40(17):169−177. doi: 10.7506/spkx1002-6630-20180916-158

    TAI Kedong, ZHAO Sumao, YANG Ziheng, et al. Effect of high-pressure homogenization on vesicle characteristics and stability of liposomes[J]. Food Science, 2019, 40(17): 169-177. doi: 10.7506/spkx1002-6630-20180916-158
    [27]
    BAI Xinyan, QIU Zhichang, ZHENG Zhenjia, et al. Preparation and characterization of garlic polysaccharide-Zn (II) complexes and their bioactivities as a zinc supplement in Zn-deficient mice[J]. Food Chemistry:X,2022,15:100361. doi: 10.1016/j.fochx.2022.100361
    [28]
    ZHAO Ruixuan, ZHANG Bin, SUN Jieru, et al. Evaluation of degradation of pigments formed during garlic discoloration in different pH[J]. Food Research International,2021,140:109957. doi: 10.1016/j.foodres.2020.109957
    [29]
    SANTOS N D, MAYER L D, ABRAHAM S A, et al. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2002,1561(2):188−201. doi: 10.1016/S0005-2736(02)00345-0
    [30]
    李妍, 方芳, 曹珂珂, 等. 枸杞多糖脂质体制备工艺[J]. 食品与发酵工业,2018,44(5):176−181. [LI Yan, FANG Fang, CAO Keke, et al. Liposome preparation technology of Lycium barbarum polysaccharide[J]. Food and Fermentation Industries,2018,44(5):176−181.

    LI Yan, FANG Fang, CAO Keke, et al. Liposome preparation technology of Lycium barbarum polysaccharide[J]. Food and Fermentation Industries, 2018, 44(5): 176-181.
    [31]
    龚频, 方文静, 赵文婧, 等. 灵芝多糖脂质体制备工艺[J]. 食用菌学报,2022,29(5):101−108. [GONG Pin, FANG Wenjing, ZHAO Wenjing, et al. Preparation technology of Ganoderma lucidum polysaccharide liposome[J]. Acta Edulis Fungi,2022,29(5):101−108.

    GONG Pin, FANG Wenjing, ZHAO Wenjing, et al. Preparation technology of ganoderma lucidum polysaccharide liposome[J]. Acta Edulis Fungi, 2022, 29(5): 101-108.
    [32]
    张婷, 温鹤迪, 宋敬一, 等. 基于乙醇注入-高压均质的蛋清肽脂质体制备及体内外缓释效果[J]. 食品科学,2021,42(13):79−86. [ZHANG Ting, WEN Hedi, SONG Jingyi, et al. Preparation and in vivo and in vitro sustained-release characteristics of egg white peptide liposomes by ethanol injection combined with high-pressure homogenization[J]. Food Science,2021,42(13):79−86.

    ZHANG Ting, WEN Hedi, SONG Jingyi, et al. Preparation and in vivo and in vitro sustained-release characteristics of egg white peptide liposomes by ethanol injection combined with high-pressure homogenization[J]. Food Science, 2021, 42(13): 79-86.
    [33]
    张勇军, 巴娟, 巫辅达, 等. 玉屏风多糖脂质体的制备及表征研究[J]. 动物医学进展,2019,40(7):52−55. [ZHANG Yongjun, BA Juan, WU Fuda, et al. Preparation and characterization of Yupingfeng polysaccharide liposomes[J]. Progress in Veterinary Medicine,2019,40(7):52−55.

    ZHANG Yongjun, BA Juan, WU Fuda, et al. Preparation and characterization of Yupingfeng polysaccharide liposomes[J]. Progress in Veterinary Medicine, 2019, 40(7): 52-55.
    [34]
    BO Ruonan, MA Xia, FENG Yibo, et al. Optimization on conditions of Lycium barbarum polysaccharides liposome by RSM and its effects on the peritoneal macrophages function[J]. Carbohydrate Polymers,2015,117:215−222. doi: 10.1016/j.carbpol.2014.09.060
    [35]
    扈瑞瑞, 申国明, 高林, 等. 烟草绿原酸纳米脂质体的制备工艺及其稳定性研究[J]. 中国农业科技导报,2017,19(4):128−137. [HU Ruirui, SHEN Guoming, GAO Lin, et al. Preparation of tobacco chlorogenic acid nanoliposome and its stability analysis[J]. Journal of Agricultural Science and Technology,2017,19(4):128−137.

    HU Ruirui, SHEN Guoming, GAO Lin, et al. Preparation of tobacco chlorogenic acid nanoliposome and its stability analysis[J]. Journal of Agricultural Science and Technology, 2017, 19(4): 128-137.
    [36]
    关明, 李浩, 艾散江·艾海提. 胡麻卵磷脂鉴别检查与紫外吸收光谱定量分析[J]. 光谱实验室,2013,30(3):1249−1254. [GUAN Ming, LI Hao, AI Sanjiang. Identification and examination of flax lecithin and quantitative analysis by ultraviolet absorbed spectroscopy[J]. Chinese Journal of Spectroscopy Laboratory,2013,30(3):1249−1254.

    GUAN Ming, LI Hao, AI Sanjiang. Identification and examination of flax lecithin and quantitative analysis by ultraviolet absorbed spectroscopy[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(3): 1249-1254.
    [37]
    李啟彬, 吕丽铙, 富思逸, 等. 细菌素QY-C与虾青素复合纳米脂质体制备及其特性评价[J]. 食品与发酵工业, 2023, 49 ( 8 ) : 121−127.

    LI Qibin, LÜ Linao, FU Siyi, et al. Preparation and properties of complex nanoliposomes with bacteriocin QY-C and astaxanthin[J]. Food and Fermentation Industries, 2023, 49 ( 8 ) : 121−127.
  • Cited by

    Periodical cited type(3)

    1. 张欣,孙敬蒙,贾珍珍,张诗雨,张佳慧,张炜煜. 叶黄素复合纳米颗粒的制备工艺优化及其稳定性和抗氧化活性分析. 食品工业科技. 2024(16): 102-113 . 本站查看
    2. 赵永雷,杨付锐,牛俊华,郑岚,马耀宏,孟庆军,王丙莲,杨艳. 三种玫瑰多糖的结构特征及美容相关活性的比较研究. 食品工业科技. 2024(19): 325-336 . 本站查看
    3. 李祥辉,任军,赵轩,范丽颖. 榛子油脂质体的制备工艺及其表征研究. 长春理工大学学报(自然科学版). 2024(06): 99-106 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (242) PDF downloads (47) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return