Citation: | YUE Ziyao, DONG Liyuan, LI Lian, et al. Optimization of Fermentation Process for Antifungal Peptide Production by Lacticaseibacillus paracasei ALAC[J]. Science and Technology of Food Industry, 2023, 44(24): 168−174. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110322. |
[1] |
孙二娜, 张小妹, 赵伊凡, 等. 副干酪乳杆菌LC-37乳酸菌饮料对人体的促消化和调节肠道菌群作用[J]. 中国食品学报,2021,21(10):95−100. [SUN Ernan, ZHANG Xiaomei, ZHAO Yifan, et al. Effects of Lactobacillus paracasei LC-37 lactic acid bacteria beverage on human digestion and regulation of intestinal flora[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(10):95−100.]
SUN Ernan, ZHANG Xiaomei, ZHAO Yifan, et al. Effects of Lactobacillus paracasei LC-37 lactic acid bacteria beverage on human digestion and regulation of intestinal flora[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(10): 95−100.
|
[2] |
陈大卫, 任晨瑜, 申菲菲, 等. 混合乳酸菌及其发酵乳对小鼠肠道菌群失衡的调节作用[J]. 中国乳品工业,2020,48(12):4−9. [CHEN Dawei, REN Chenyu, SHEN Feifei, et al. Regulation of mixed lactic acid bacteria and their fermented milk on intestinal flora imbalance in mice[J]. China Dairy Industry,2020,48(12):4−9.] doi: 10.19827/j.issn1001-2230.2020.12.001
CHEN Dawei, REN Chenyu, SHEN Feifei, et al. Regulation of mixed lactic acid bacteria and their fermented milk on intestinal flora imbalance in mice[J]. China Dairy Industry, 2020, 48(12): 4−9. doi: 10.19827/j.issn1001-2230.2020.12.001
|
[3] |
HUANG Y, WANG X, WANG J, et al. Lactobacillus plantarum strains as potential probiotic cultures with cholesterol-lowering activity[J]. Journal of Dairy Science,2013,96(5):2746−2753. doi: 10.3168/jds.2012-6123
|
[4] |
王利君, 郦萍, 付碧石. 乳酸菌细菌素抗菌作用机制研究进展[J]. 食品科技,2020,45(1):36−42. [WANG Lijun, LI Ping, FU Bishi1, et al. Advances in research on antibacterial mechanism of lactic acid bacteria bacteriocin[J]. Food Science and Technology,2020,45(1):36−42.] doi: 10.13684/j.cnki.spkj.2020.01.007
WANG Lijun, LI Ping, FU Bishi1, et al. Advances in research on antibacterial mechanism of lactic acid bacteria bacteriocin[J]. Food Science and Technology, 2020, 45(1): 36−42. doi: 10.13684/j.cnki.spkj.2020.01.007
|
[5] |
MORADI M, KOUSHEH S A, ALMASI H, et al. Postbiotics produced by lactic acid bacteria:The next frontier in food safety[J]. Comprehensive Reviews in Food Science and Food Safety,2020,19(3):3390−3415.
|
[6] |
周荣雪, 陈山乔, 马文静. 微生物防腐剂在食品工业中的应用[J]. 粮食与油脂,2020,33(1):15−17. [ZHOU Rongxue, CHEN Shanqiao, MA Wenjing. Application of microbial food preservative in food industry[J]. Cereals & Oils,2020,33(1):15−17.] doi: 10.3969/j.issn.1008-9578.2020.01.006
ZHOU Rongxue, CHEN Shanqiao, MA Wenjing. Application of microbial food preservative in food industry[J]. Cereals & Oils, 2020, 33(1): 15−17. doi: 10.3969/j.issn.1008-9578.2020.01.006
|
[7] |
KHARA J S, OBUOBI S, WANG Y. Disruption of drug-resistant biofilms using de novo designed short α-helical antimicrobial peptides with idealized facial amphiphilicity[J]. Acta Biomaterialia,2017,57(3):114−118.
|
[8] |
SILVA C C G, SILVA S P M, RIBEIRO S C. Application of bacteriocins and protective cultures in dairy food preservation[J]. Front Microbiol,2018,9(2):594−604.
|
[9] |
STREEKSTRA H, VERKENNIS A E, JACOBS R, et al. Fungal strains and the development of tolerance against natamycin[J]. Int J Food Microbiol,2016,238(10):15−22.
|
[10] |
KHAN M M, KIM Y K, CHO S S, et al. Response surface optimization of culture conditions for cyclic lipopeptide MS07 from bacillus siamensis reveals diverse insights targeting antimicrobial and antibiofilm activity[J]. Processes,2020,8(6):744. doi: 10.3390/pr8060744
|
[11] |
黄升, 陈利, 苏国旗, 黄金秀. 类芽孢杆菌产脂环七肽的中试发酵参数优化[J]. 中国畜牧杂志,2022,58(10):319−323. [HAUNG Sheng, CHEN Li, SU Guoqi, et al. Optimization of pilot fermentation parameters for producing alicyclic heptapeptide by Paenibacillus[J]. Chinese Journal of Animal Science,2022,58(10):319−323.]
HAUNG Sheng, CHEN Li, SU Guoqi, et al. Optimization of pilot fermentation parameters for producing alicyclic heptapeptide by Paenibacillus[J]. Chinese Journal of Animal Science, 2022, 58(10): 319−323.
|
[12] |
MODIRI S, KASRA K R, REZA S M, et al. Growth optimization of lactobacillus acidophilus for production of antimicrobial peptide acidocin 4356:Scale up from flask to lab-scale fermenter[J]. Iranian Journal of Biotechnology,2021,19(3):2686.
|
[13] |
封成玲, 刘洋, 贾紫伟, 等. 产酶溶杆菌L-43合成抗菌肽的发酵工艺优化[J]. 食品与发酵工业,2022,48(19):196−203. [FENG Chengling, LIU Yang, JIA Ziwei, et al. Optimization of fermentation process for production of antimicrobial peptides with lysobacter enzymogenes L-43[J]. Food and Fermentation Industries,2022,48(19):196−203.]
FENG Chengling, LIU Yang, JIA Ziwei, et al. Optimization of fermentation process for production of antimicrobial peptides with lysobacter enzymogenes L-43[J]. Food and Fermentation Industries, 2022, 48(19): 196−203.
|
[14] |
江晨, 齐宏涛, 于丽娜, 等. 响应面优化花生蛋白抗菌肽制备工艺[J]. 山东农业科学,2021,53(11):111−119. [JIANG Chen, QI Hongtao, YU Lina, et al. Optimization of peanut antibacterial peptide preparation by response surface methodology[J]. Shandong Agricultural Sciences,2021,53(11):111−119.]
JIANG Chen, QI Hongtao, YU Lina, et al. Optimization of peanut antibacterial peptide preparation by response surface methodology[J]. Shandong Agricultural Sciences, 2021, 53(11): 111−119.
|
[15] |
秦楠, 杨金梅, 梁莹支, 等. 解淀粉芽孢杆菌HRH317菌株抗菌肽发酵条件优化及其抑菌活性研究[J]. 食品安全质量检测学报,2021,12(15):6169−6176. [QIN Nan, YANG Jinmei, LIANG Yingzhi, et al. Optimization of fermentation conditions and antibacterial activity of antimicrobial peptides from Bacillus amylolytica HRH317 strain[J]. Journal of Food Safety & Quality,2021,12(15):6169−6176.]
QIN Nan, YANG Jinmei, LIANG Yingzhi, et al. Optimization of fermentation conditions and antibacterial activity of antimicrobial peptides from Bacillus amylolytica HRH317 strain[J]. Journal of Food Safety & Quality, 2021, 12(15): 6169−6176.
|
[16] |
AMIRI S, REZAEI M R, SOWTI K M, et al. Characterization of antimicrobial peptides produced by Lactobacillus acido philus LA-5 and Bifidobacterium lactis BB-12 and their inhibitory effect against foodborne pathogens[J]. LWT,2022,153(10):112449.
|
[17] |
CHEN Zhongjun, LIU Jing, LI Haixuan, et al. Antifungul mechanism of active substances produced by lactobacillus against yeast[J]. Journal of Microbiology and Biotechnology,2016,5(4):53−59.
|
[18] |
CHEN Zhongjun, LI Xiaoting, GAO Hechen. Production of proteinaceous antifungal substances from Lactobacillus plantarum ALAC-4 isolated from Inner Mongolia traditional fermented dairy food[J]. International Journal of Dairy Technology,2018,71(1):223−229.
|
[19] |
HERNANDEZ D, CARDELL E, ZARATE V. Antimicrobial activity of lactic acid bacteria isolated from Tenerife cheese:Initial characterization of plantaricin TF711, a bacteriocin like substance produced by Lactobacillus plantarum TF711[J]. Journal of Applied Microbiology,2010,99(1):77−84.
|
[20] |
ASEN I M, MORETRO T, KATLA T, et al. Influence of complex nutrients, temperature and pH on bacteriocin production by Lactobacil lus sakei CCUG42687[J]. Applied Microbiology and Biotechnology,2000,53(2):159−166. doi: 10.1007/s002530050003
|
[21] |
VAN DEN BERGHE E, DE WINTER T, DE VUYST L. Enterocin A production by Enterococcus faecium FAIR-E 406 is characterised by a temperature-and pH-dependent switch-off mechanism when growth is limited due to nutrient depletion[J]. Int J Food Microbiol,2006,107(2):159−170. doi: 10.1016/j.ijfoodmicro.2005.08.027
|
[22] |
李海瑄, 高鹤尘, 陈忠军. 乳杆菌产生的抑酵母活性物质抑菌机理的研究[J]. 中国乳品工业,2015,43(10):9−12,17. [LI Haixuan, GAO Hechen, CHEN Zhongjun. Study on inhibiting mechanism of antiyeast substances produced by Lactobacillus[J]. China Dairy Industry,2015,43(10):9−12,17.]
LI Haixuan, GAO Hechen, CHEN Zhongjun. Study on inhibiting mechanism of antiyeast substances produced by Lactobacillus[J]. China Dairy Industry, 2015, 43(10): 9−12,17.
|
[23] |
王瑶, 李琪, 李平兰. 响应面法优化植物乳杆菌LPL-1产细菌素发酵条件及细菌素理化性质分析[J]. 食品科学,2018,39(22):101−109. [WANG Yao, LI Qi, LI Pinglan. Optimization of fermentation conditions for plantaricin production by Lactobacillus plantarum LPL-1 by response surface methodology and its physicochemical properties[J]. Food Science,2018,39(22):101−109.] doi: 10.7506/spkx1002-6630-201822016
WANG Yao, LI Qi, LI Pinglan. Optimization of fermentation conditions for plantaricin production by Lactobacillus plantarum LPL-1 by response surface methodology and its physicochemical properties[J]. Food Science, 2018, 39(22): 101−109. doi: 10.7506/spkx1002-6630-201822016
|
[24] |
OGUNBANWO S T, SANNI A I, ONILUDE A A. Influence of cultural conditions on the production of bacteriocin by Lactobacillus brevis OGI[J]. Africa Journal of Biotechnology,2003,2(7):179−184. doi: 10.5897/AJB2003.000-1037
|
[25] |
ZAMFIR M, CALLEWAERT R, CORNEA P C, et al. Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB801[J]. Applied Microbiology,2010,87(6):923−931.
|
[26] |
陈琳, 孟祥晨. 响应面法优化植物乳杆菌代谢产细菌素的发酵条件[J]. 食品科学,2011,32(3):176−180. [CHEN Lin, MENG Xiangchen. Optimization of fermentation conditions of lactobacillus plantarum for bacteriocin production by response surface methodology[J]. Food Science,2011,32(3):176−180.]
CHEN Lin, MENG Xiangchen. Optimization of fermentation conditions of lactobacillus plantarum for bacteriocin production by response surface methodology[J]. Food Science, 2011, 32(3): 176−180.
|
[27] |
胡彦新, 刘小莉, 王英, 等. 香肠乳杆菌(Lactobacillus farcimini)FM-MM-4产细菌素发酵条件和培养基优化[J]. 食品工业科技,2016,37(10):255−259,272. [HU Yanxin, LIU Xiaoli, WANG Ying, et al. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry,2016,37(10):255−259,272.]
HU Yanxin, LIU Xiaoli, WANG Ying, et al. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, 37(10): 255−259,272.
|
[28] |
樊振江, 孟楠. 微生物防腐剂在食品保鲜上应用[J]. 现代食品,2017(4):12−14. [Fan Zhenjiang, Meng Nan. The application of microbial preservatives in food preservation[J]. Modern Food,2017(4):12−14.] doi: 10.16736/j.cnki.cn41-1434/ts.2017.04.005
Fan Zhenjiang, Meng Nan. The application of microbial preservatives in food preservation[J]. Modern Food, 2017(4): 12−14. doi: 10.16736/j.cnki.cn41-1434/ts.2017.04.005
|
[29] |
CANO-GARRIDO O, SERAS-FRANZOSO J, GARCIA-FRUITÓS E. Lactic acid bacteria:Reviewing the potential of a promising delivery live vector for biomedical purposes[J]. Microbial Cell Factories,2015,14(1):137. doi: 10.1186/s12934-015-0313-6
|
[30] |
满丽莉, 向殿军, 布日额, 等. 提高乳酸菌细菌素合成量方法的研究进展[J]. 现代食品科技,2019,35(4):293−300. [MAN Lili, XIANG Dianjun, BU Rie, et al. Research progress on methods to increase the bacteriocin synthesis in lactic acid bacteria[J]. Modern Food Science and Technology,2019,35(4):293−300.] doi: 10.13982/j.mfst.1673-9078.2019.4.040
MAN Lili, XIANG Dianjun, BU Rie, et al. Research progress on methods to increase the bacteriocin synthesis in lactic acid bacteria[J]. Modern Food Science and Technology, 2019, 35(4): 293−300. doi: 10.13982/j.mfst.1673-9078.2019.4.040
|
1. |
甄子辰,刘阳,王珊珊,路宏朝,王令,张涛. 基于文献计量的乳酸菌细菌素研究进展分析. 食品工业科技. 2024(09): 378-388 .
![]() | |
2. |
杜丽红,袁谨怡,战俊杰,陈雨新,王可答,李杨,朱璇,张金凤. 大肠杆菌产L-酪氨酸发酵工艺优化. 食品与发酵科技. 2024(05): 16-22 .
![]() |