WU Ying, WANG Shuangdan, TANG Wen, et al. Phenolic Ketone Contents and Antioxidant, Antibacterial Properties and Inhibitory Tyrosinase Activity of the Ethyl Acetate Extracted from Calendula officinalis L.[J]. Science and Technology of Food Industry, 2023, 44(19): 347−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110304.
Citation: WU Ying, WANG Shuangdan, TANG Wen, et al. Phenolic Ketone Contents and Antioxidant, Antibacterial Properties and Inhibitory Tyrosinase Activity of the Ethyl Acetate Extracted from Calendula officinalis L.[J]. Science and Technology of Food Industry, 2023, 44(19): 347−355. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110304.

Phenolic Ketone Contents and Antioxidant, Antibacterial Properties and Inhibitory Tyrosinase Activity of the Ethyl Acetate Extracted from Calendula officinalis L.

More Information
  • Received Date: November 27, 2022
  • Available Online: July 26, 2023
  • In this paper, the total phenolic and total flavonoid content, in vitro antioxidant and antibacterial activities of ethyl acetate extraction (EA phase) and its related extracted phases of Calendula officinalis L were studied. The content of five phenolic ketones, namely gallic acid, chlorogenic acid, caffeic acid, rutin and ferulic acid was analyzed by high performance liquid chromatography (HPLC). The results showed that the total phenolic ketone content, antioxidant and antibacterial activities of EA phase were higher than other extracted phases, the total phenolic ketone content of EA phase was 330.760±4.640 mg/g, rutin and gallic acid were the highest in EA phase, which were 0.978±0.203 and 0.230±0.301 mg/g, respectively. The antioxidant activity of EA phase was close to that of the positive control VC, and moderately sensitive to Staphylococcus aureus. The enzyme kinetic experiment showed that EA phase had a good inhibiting effect on tyrosinase activity with an IC50 of 0.965±0.001 mg/mL, which was better than that of the positive control arbutin. The results demonstrated that EA phase suppressed the activity of tyrosinase in a reversible mixed-inhibition, and the inhibition constants KI and KIS were 0.254 and 5.577 mg/mL, respectively. The best antioxidant, antibacterial and tyrosinase inhibiting effects of EA phase were correlated with the high content of total phenols and total flavonoids and their richness in functional components, which were more easily extracted by ethyl acetate solvent.
  • [1]
    CHEN Y S, LEE S M, LIN Y J, et al. Effects of Danshensu and Salvianolic Acid B from Salvia miltiorrhiza Bunge (Lamiaceae) on cell proliferation and collagen and melanin production[J]. Molecules,2014,19(2):2029−2041. doi: 10.3390/molecules19022029
    [2]
    PASCA C, MARGHITAS L A, BOBIS O, et al. Total content of polyphenols and antioxidant activity of different melliferous plants[J]. Animal Science and Biotechnologies,2016,73(1):2−9.
    [3]
    ILKAY E O, SEZER S F, SINEM A E, et al. Tyrosinase and cholinesterase inhibitory potential and flavonoid characterization of Viola odorata L. (Sweet Violet)[J]. Phytotherapy Research,2015,29(9):1304−1310. doi: 10.1002/ptr.5378
    [4]
    傅佳愈, 杨远帆, 倪辉, 等. 茶花粉提取物对酪氨酸酶的抑制作用[J]. 中国食品学报,2015,15(7):66−72. [FU J Y, YANG Y F, NI H, et al. The anti-tyrosinase effect of extract from Camellia pollen[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(7):66−72.

    FU J Y, YANG Y F, NI H, et al. The anti-tyrosinase effect of extract from Camellia pollen[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(7): 66-72.
    [5]
    潘振东, 李璐, 薛梦莹, 等. 太白韭对金黄色葡萄球菌的抑制作用[J]. 中国食品学报,2021,21(1):318−326. [PAN Z D, LI L, XUE M Y, et al. Antibacterial activity of allium prattii against Staphylococcus aureus[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):318−326.

    PAN Z D, LI L, XUE M Y, et al. Antibacterial activity of allium prattii against Staphylococcus aureus[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 318-326.
    [6]
    霍锦双, 隋伟策, 孙红男, 等. 甘薯茎叶多酚类物质的组分构成及抑菌活性[J]. 新疆农业科学,2021,58(3):556−564. [HUO J S, SUI W C, SUN H N, et al. Individual phenolic composition and antimicrobial activity of sweet potato leaf polyphenols[J]. Xinjiang Agricultural Sciences,2021,58(3):556−564.

    HUO J S, SUI W C, SUN H N, et al. Individual phenolic composition and antimicrobial activity of sweet potato leaf polyphenols[J]. Xinjiang Agricultural Sciences, 2021, 58(3): 556-564.
    [7]
    许恩婷, 许梦洁, 邵清松, 等. 金线莲不同器官及萃取部位的抗氧化活性研究[J]. 中国食品学报,2019,19(1):28−33. [XU E T, XU M J, SHAO Q S, et al. Studies on the active ingredients and antioxidant capacity from different organs and extraction parts of Anoectochilus roxburghii[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(1):28−33.

    XU E T, XU M J, SHAO Q S, et al. Studies on the active ingredients and antioxidant capacity from different organs and extraction parts of Anoectochilus roxburghii[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(1): 28-33.
    [8]
    马嘉洁, 赵端端, 全世航, 等. 紫苏叶黄酮、多酚提取工艺优化及不同品种抗氧化活性比较[J/OL]. 食品工业科技: 344−352. [2022-11-23]. DOI: 10.13386/j.issn1002-0306.2022080165.

    MA J J, ZHAO D D, QUAN S H, et al. Optimization of extraction process of flavonoids and polyphenols from Perilla frutescens (L.) Britt leaves and comparison of antioxidant activities of different varieties[J/OL]. Scienceand Technology of FoodIndustry: 344−352. [2022-11-23]. doi:10.13386/j.issn1002-0306.2022080165.
    [9]
    BUTNARIU M, CORADINI C Z. Evaluation of biologically active compounds from Calendula officinalis flowers using spectrophotometry[J]. Chemistry Central Journal,2012,6(1):1−7. doi: 10.1186/1752-153X-6-1
    [10]
    SAHINGIL D. GC/MS-Olfactometric characterization of the volatile compounds, determination antimicrobial and antioxidant activity of essential oil from flowers of Calendula (Calendula officinalis L.)[J]. Journal of Essential Oil Bearing Plants,2019,22(6):1571−1580. doi: 10.1080/0972060X.2019.1703829
    [11]
    ZAKI A, ASHOUR A, MIRA A, et al. Biological activities of oleanolic acid derivatives from Calendula officinalis seeds[J]. Phytotherapy Research: PTR,2016,30(5):835−841. doi: 10.1002/ptr.5589
    [12]
    MULEY B P, KHADABADI S S, BANARASE N B. Phytochemical constituents and pharmacological activities of Calendula officinalis Linn (Asteraceae): A review[J]. Tropical Journal of Pharmaceutical Research,2009,8(5):455−465.
    [13]
    崔彬淯. 天然美白原料的筛选及金盏菊美白作用研究[D]. 上海: 上海应用技术大学, 2019

    CUI B Y. Screening of natural whitening raw materials and study on the whitening effect of Calendula[D]. Shanghai: Shanghai Institute of Technology, 2019.
    [14]
    FATIMA S S, GOVEKAR S U, SATARDEKAR K V, et al. In vitro analysis of ethanolic extract of flowers of Calendula officinalis for antioxidant, antimicrobial and UV-H2O2 induced DNA damage protection activity[J]. Journal of Pharmacognosy and Phytochemistry,2018,7(5):2378−2383.
    [15]
    OLENNIKOV D N, KASHCHENKO N I. 1, 5-Di-O-isoferuloylquinic acid and other phenolic compounds from pollen of Calendula officinalis[J]. Chemistry of Natural Compounds,2014,50(4):589−593. doi: 10.1007/s10600-014-1030-9
    [16]
    郑佳, 卢先明, 邓晶晶. 金盏菊不同提取液体外抑菌作用初步研究[J]. 中药与临床,2016,7(3):45−46. [ZHENG J, LU X M, DENG J J. Study on the bacteriostatic effects of Jinzhanju extract in vitro[J]. Pharmacy and Clinics of Chinese Materia Medica,2016,7(3):45−46.

    ZHENG J, LU X M, DENG J J. Study on the bacteriostatic effects of Jinzhanju extract in vitro[J]. Pharmacy and Clinics of Chinese Materia Medica, 2016, 7(3): 45-46.
    [17]
    RIGANE G, YOUNES S B, GHAZGHAZI H, et al. Investigation into the biological activities and chemical composition of Calendula officinalis L. growing in Tunisia[J]. International Food Research Journal,2013,20(6):3001−3007.
    [18]
    ADINA F. HPLC determination of polyphenols from Calendula officinalis L. flowers[J]. Acta Universitatis Cinbinesis, Series E: Food Technology,2017,21(2):97−101.
    [19]
    SINGLETON V L, ROSSI J A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents[J]. American Journal of Enology and Viticulture,1965,16(3):144−158. doi: 10.5344/ajev.1965.16.3.144
    [20]
    HAMEED A, AKHTAR N. Comparative chemical investigation and evaluation of antioxidant and tyrosinase inhibitory effects of Withania somnifera (L. ) dunal and Solanum nigrum (L.) berries[J]. Acta Pharmaceutica,2018,68(1):47−60. doi: 10.2478/acph-2018-0007
    [21]
    LOESCHER C M, MORTON D W, RAZIC S, et al. High performance thin layer chromatography (HPTLC) and high performance liquid chromatography (HPLC) for the qualitative and quantitative analysis of Calendula officinalis-Advantages and limitations[J]. Journal of Pharmaceutical and Biomedical Analysis,2014,98:52−59. doi: 10.1016/j.jpba.2014.04.023
    [22]
    ABDULLAH F O, HAMAHAMEEN B, DASTAN D. Chemical constituents of the volatile and nonvolatile, cytotoxic and free radical scavenging activities of medicinal plant: Ranunculus millefoliatus and Acanthus dioscoridis[J]. Polish Journal of Environmental Studies,2021,30(3):1981−1989. doi: 10.15244/pjoes/128265
    [23]
    CHATATIKUN M, CHIABCHALARD A. Thai plants with high antioxidant levels, free radical scavenging activity, anti-tyrosinase and anti-collagenase activity[J]. BMC Complementary and Alternative Medicine,2017,17(1):487. doi: 10.1186/s12906-016-1505-2
    [24]
    SU X D, Gao Y, XIANG Y X, et al. Chemical composition and biological activities of the essential oil from Aristolochia fordiana hemsl[J]. Records of Natural Products,2019,13(4):346−354. doi: 10.25135/rnp.111.18.09.897
    [25]
    吴颖, 刘晴, 唐文, 等. 丹参挥发油与蒲公英提取物复配物在化妆品中的应用[J]. 精细化工,2022,39(3):562−568. [WU Y, LIU Q, TANG W, et al. Application of complexes of Salvia miltiorrhiza volatile oil and dandelion extract in cosmetics[J]. Fine Chemicals,2022,39(3):562−568.

    WU Y, LIU Q, TANG W, et al. Application of complexes of Salvia miltiorrhiza volatile oil and dandelion extract in cosmetics[J]. Fine Chemicals, 2022, 39(3): 562-568.
    [26]
    LEE G Y, CHO B O, SHIN J Y, et al. Tyrosinase inhibitory components from the seeds of Cassia tora[J]. Archives of Pharmacal Research,2018,41(5):490−496. doi: 10.1007/s12272-018-1032-4
    [27]
    XUAN S H, KIM G Y, YU J Y, et al. Antioxidant and cellular protective effects against oxidative stress of Calendula officinalis flowers extracts in human skin cells[J]. Applied Chemistry for Engineering,2016,27(6):620−626. doi: 10.14478/ace.2016.1093
    [28]
    OURABIA I, DJEBBAR R, SAMIRA T, et al. Determination of essential oil composition, phenolic content, and antioxidant, antibacterial and antifungal activities of Marigold (Calendula officinalis L.) cultivated in Algeria[J]. Carpathian Journal of Food Science & Technology,2019,11(2):93−110.
    [29]
    LI H R, HABASI M, XIE L Z, et al. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells[J]. Molecules,2014,19(9):12940−12948. doi: 10.3390/molecules190912940
    [30]
    何雅静, 张群琳, 谷利伟, 等. 柑橘中酚酸类化合物及其生物活性与机理的研究进展[J]. 食品与发酵工业,2020,46(15):301−306. [HE Y J, ZHANG Q L, GU L W, et al. Research progress on phenolic acids in citrus and their biological activities and mechanisms[J]. Food and Fermentation Industries,2020,46(15):301−306.

    HE Y J, ZHANG Q L, GU L W, et al. Research progress on phenolic acids in citrus and their biological activities and mechanisms[J]. Food and Fermentation Industries, 2020, 46(15): 301-306.
    [31]
    范金波, 蔡茜彤, 冯叙桥, 等. 5种天然多酚类化合物抗氧化活性的比较[J]. 食品与发酵工业,2014,40(7):77−83. [FAN J B, CAI Q T, FENG X Q, et al. The comparison of five natural phenolic compounds on antioxidant activity in vitro[J]. Food and Fermentation Industries,2014,40(7):77−83.

    FAN J B, CAI Q T, FENG X Q, et al. The comparison of five natural phenolic compounds on antioxidant activity in vitro[J]. Food and fermentation industries, 2014, 40(7): 77-83.
    [32]
    陈莹. 桑葚酒的发酵工艺及酚酸抗氧化研究[D]. 西安: 西北大学, 2011

    CHEN Y. Studies on the fermentation process of mulberry wine and the antioxidant activity of phenolics[D]. Xi’an: Northwest University, 2011.
    [33]
    只德贤, 覃海波, 李建颖. 微波超声协同提取金盏菊皂苷工艺及其抗氧化性研究[J]. 食品研究与开发,2021,42(19):118−125. [ZHI D X, QIN H B, LI J Y, et al. Microwave-ultrasonic extraction of Calendula officinalis saponins and their antioxidant analysis[J]. Food Research and Development,2021,42(19):118−125.

    ZHI D X, QIN H B, LI J Y, et al. Microwave-Ultrasonic extraction of Calendula officinalis saponins and their antioxidant analysis[J]. Food Research and Development, 2021, 42(19): 118-125.
    [34]
    王婧, 宋莲军, 马燕, 等. 豌豆多酚的组成、提取和生理活性的研究进展[J]. 食品工业科技,2022,43(23):418−428. [WANG J, SONG L J, MA Y, et al. Research progress on composition, extraction and physiological activity of Pea Polyphenols[J]. Science and Technology of Food Industry,2022,43(23):418−428.

    WANG J, SONG L J, MA Y, et al. Research progress on composition, extraction and physiological activity of Pea Polyphenols[J]. Science and Technology of Food Industry,2022,43(23): 418-428.
    [35]
    杨阳, 李祥松, 郭倩. 刺梨中芦丁的提取及其抑菌效果的研究[J]. 生物化工,2019,5(6):28−30. [YANG Y, LI X S, GUO Q. Study on extraction and antibactereial effect of rutin form Rosa roxburghii[J]. Biological Chemical Engineering,2019,5(6):28−30.

    LI Y, LI X S, GUO Q. Study on extraction and antibactereial effect of rutin form Rosa roxburghii[J]. Biological Chemical Engineering, 2019, 5(6): 28-30.
    [36]
    张康逸, 杨徐宁, 许国震, 等. 青麦仁麸皮中阿魏酸的抗氧化性和抑菌活性研究[J]. 包装与食品机械,2021,39(5):27−34. [ZHANG K Y, YANG X N, XU G Z, et al. Study on antioxidant and antibacterial activity of ferulic acid in green wheat bran[J]. Packaging and Food Machinery,2021,39(5):27−34.

    ZHANG K Y, YANG X N, XU G Z, et al. Study on antioxidant and antibacterial activity of ferulic acid in green wheat bran[J]. Packaging and Food Machinery, 2021, 39(5): 27-34.
    [37]
    张易, 顾瑜. 绿原酸的抑菌作用及其在口腔中的应用进展[J]. 医药论坛杂志,2022,43(7):104−107. [ZHANG Y, GU Y. Bacteriostasis of chlorogenic acid and its application in oral cavity[J]. Journal of Medical Forum,2022,43(7):104−107.

    ZHANG Y, GU Y. Bacteriostasis of chlorogenic acid and its application in oral cavity[J]. Journal of Medical Forum, 2022, 43(7): 104-107.
    [38]
    梁桂星, 张文婷, 汪最, 等. 没食子酸抑制生物被膜机制的初步研究[J/OL]. 中国动物传染病学报, 2022: 1−9. [2022-05-05]. doi: 10.19958/j.cnki.cn31-2031/s.20220505.001.

    LIANG G X, ZHANG W T, WANG Z, et al. Preliminary study on the mechanism of gallic acid inhibiting biofilm[J/OL]. Chinese Journal of Animal Infectious Diseases, 2022: 1−9. [2022-05-05]. doi: 10.19958/j.cnki.cn31-2031/s.20220505.001.
    [39]
    石嘉怿. 青梅花提取物的酪氨酸酶抑制作用及机理研究[J]. 食品工业科技,2011,32(10):205−207,211. [SHI J Y. Inhibitory effect and mechanism of prunus mume flowers extracts on tyrosinase[J]. Science and Technology of Food Industry,2011,32(10):205−207,211.

    SHI J Y, Inhibitory effect and mechanism of prunus mume flowers extracts on tyrosinase[J]. Science and Technology of Food Industry, 2011, 32(10): 205-207,211.
    [40]
    SI Y X, YIN S J, OH S, et al. An integrated study of tyrosinase inhibition by rutin: Progress using a computational simulation[J]. Journal of Biomolecular Structure and Dynamics,2012,29(5):999−1012. doi: 10.1080/073911012010525028
    [41]
    MARUYAMA H, KAWAKAMI F, LWIN T T, et al. Biochemical characterization of ferulic acid and caffeic acid which effectively inhibit melanin synthesis via different mechanisms in B16 melanoma cells[J]. Biological and Pharmaceutical Bulletin,2018,41(5):806−810. doi: 10.1248/bpb.b17-00892
    [42]
    KIM Y J. Antimelanogenic and antioxidant properties of gallic acid[J]. Biological and Pharmaceutical Bulletin,2007,30(6):1052−1055. doi: 10.1248/bpb.30.1052
    [43]
    NIRMAL N P, BENJAKUL S. Inhibition kinetics of catechin and ferulic acid on polyphenoloxidase from cephalothorax of Pacific white shrimp (Litopenaeus vannamei)[J]. Food Chemistry,2012,131(2):569−573. doi: 10.1016/j.foodchem.2011.09.025
    [44]
    WIJAYA C, ELYA B, YANUAR A. Study of tyrosinase inhibitory activity and phytochemical screening of Cassia fistula L. leaves[J]. International Journal of Applied Pharmaceutics,2018,10(1):384−387. doi: 10.22159/ijap.2018.v10s1.85
    [45]
    袁博, 曹健, 秦朗, 等. 四种酚类化合物体外抗氧化活性的比较研究[J]. 食品工业,2018,39(9):200−204. [YUAN B, CAO J, QIN L, et al. Study on the comparison of antioxidant activity in vitro of four phenolic compounds[J]. The Food Industry,2018,39(9):200−204.

    YUAN B, CAO J, QIN L, et al. Study on the comparison of antioxidant activity in vitro of four phenolic compounds[J]. The Food Industry, 2018, 39(9): 200-204.
    [46]
    XIE P J, HUANG L X, ZHANG C H, et al. Skin-care effects of dandelion leaf extract and stem extract: Antioxidant properties, tyrosinase inhibitory and molecular docking simulations[J]. Industrial Crops and Products,2018,111:238−246. doi: 10.1016/j.indcrop.2017.10.017
    [47]
    羿月同, 李莎莎, 樊梓鸾, 等. 红豆越橘花青素与金银花多酚协同抗氧化活性[J]. 精细化工,2021,38(5):967−972,1029. [YI Y T, LI S S, FAN Z L, et al. Synergism antioxidation of lingonberry anthocyanin and lonicera japonica polyphenols[J]. Fine Chemicals,2021,38(5):967−972,1029.

    YI Y T, LI S S, FAN Z L, et al. Synergism antioxidation of lingonberry anthocyanin and lonicera japonica polyphenols[J]. Fine Chemicals, 2021, 38(5): 967-972, 1029.
    [48]
    AGRAWAL S, BARROW C J, ADHOLEYA A, et al. Unveiling the dermatological potential of marine fungal species components: antioxidant and inhibitory capacities over tyrosinase[J]. Biotechnology and Applied Biochemistry,2022,69(3):1252−1266. doi: 10.1002/bab.2201
  • Cited by

    Periodical cited type(1)

    1. 岳丹,陆颖,李梦飞,黄代涛,张锦标,种玉晴. 基于斑马鱼SLC17A8基因的表达特征验证其对黑色素转运的影响. 饲料研究. 2024(18): 81-87 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (104) PDF downloads (13) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return