DING Zikang, LI Xinyue, ZHAO Meng, et al. Study on the Preparation and Antioxidant Activity of Low Molecular Weight Polysaccharide from Cudrania tricuspidata Fruits[J]. Science and Technology of Food Industry, 2023, 44(19): 39−46. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110253.
Citation: DING Zikang, LI Xinyue, ZHAO Meng, et al. Study on the Preparation and Antioxidant Activity of Low Molecular Weight Polysaccharide from Cudrania tricuspidata Fruits[J]. Science and Technology of Food Industry, 2023, 44(19): 39−46. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110253.

Study on the Preparation and Antioxidant Activity of Low Molecular Weight Polysaccharide from Cudrania tricuspidata Fruits

More Information
  • Received Date: November 23, 2022
  • Available Online: August 16, 2023
  • Objective: The molecular weight Cudrania tricuspidata Fruits polysaccharide was prepared and the effect of different molecular weight on their antioxidant activity was further explored. Methods: The low molecular weight cudge polysaccharide was prepared by H2O2/VC degradation method using cudge fruit as raw material. The polysaccharides before and after degradation were analyzed for their physicochemical properties using high performance gel permeation chromatography and ion chromatography, and compared for their total antioxidant activity, reducing ability, DPPH radical scavenging rate and OH radical scavenging rate. Results: The suitable ratio of this cudge polysaccharide degradation by H2O2/VC method was H2O2:VC=1.5:1, and the five kinds of cudge polysaccharide ZGB, ZGC, ZGD, ZGE and ZGF (Mn 49.9, 30.5, 27.6, 25.9, and 28.9 kDa) were obtained. The structure did not change significantly after degradation by infrared spectrogram analysis. IC analysis showed that it was composed of rhamnose, arabinose, galactose, glucose, xylose galacturonic acid and a small amount of glucosamine hydrochloride and mannose. All the five kinds of polysaccharides with low molecular weight had antioxidant activity, which was positively correlated with its concentration. Among them, ZGD (H2O2:VC=30:20 mmol/L) had the best antioxidant activity, compared with crude polysaccharide, its total antioxidant activity and reducing capacity increased by 42.7% and 10.8%, respectively, and the scavenging rate of ·OH increased by 56.3%, while the scavenging rate of DPPH· was not significantly enhanced, and the scavenging rate was 87.44%. Conclusion: After degradation, the antioxidant activity of polysaccharide ZGD is the best.
  • [1]
    李安琪, 阎力君. 柘木研究进展[J]. 特产研究,2022,44(2):139−144. [LI A Q, YAN L J. Advances in research on Cudrania tricuspidata[J]. Special Wild Economic Animal and Plant Research,2022,44(2):139−144.

    LI A Q, YAN L J. Advances in research on Cudrania tricuspidata[J]. Special Wild Economic Animal and Plant Research, 2022, 44(2): 139-144.
    [2]
    程勇杰, 陈小伟, 蒋立新, 等. 柘果酵素发酵过程氨基酸的变化规律研究[J]. 天然产物研究与开发,2018,30(8):1402−1409. [CHEN Y J, CHEN X W, JIANG L X, et al. Study on the change of amino acids in the fermentation process of Cudrania tricuspidata fruit enzyme[J]. Natural Product Research and Development,2018,30(8):1402−1409.

    CHEN Y J, CHEN X W, JIANG L X, et al. Study on the change of amino acids in the fermentation process of Cudrania tricuspidata fruit enzyme[J]. Natural Product Research and Development, 2018, 30(8): 1402-1409.
    [3]
    吴雅清, 许瑞安. 降血脂多糖的研究进展[J]. 中国中药杂志,2018,43(17):3451−3459. [WU Y Q, XU R A. Progress of research on lipid-lowering polysaccharides[J]. China Journal of Chinese Materia Medica,2018,43(17):3451−3459.

    WU Y Q, XU R A. Progress of research on lipid-lowering polysaccharides[J]. China Journal of Chinese Materia Medica, 2018, 43(17): 3451-3459.
    [4]
    谢渟, 肖春, 王涓, 等. 灰树花活性多糖构效关系研究进展[J]. 微生物学通报,2022,49(8):3401−3419. [XIE T, XIAO C, WANG J, et al. Research progress in structure-activity relationship of active polysaccharides from Grifola frondosa[J]. Microbiology China,2022,49(8):3401−3419.

    XIE T, XIAO C, WANG J, et al. Research progress in structure-activity relationship of active polysaccharides from Grifola frondosa[J]. Microbiology China, 2022, 49(8): 3401-3419.
    [5]
    刘锐, 觹许晨, 史春悦, 等. 枸杞多糖及其水解产物的抗氧化活性研究[J]. 中国果菜,2014,34(4):1−7. [LIU R, XI X C, SHI C Y, et al. Study on the antioxidant activity of Lycium barbarum polysaccharide and its hydrolyzed products[J]. China Vegetables,2014,34(4):1−7.

    LIU R, XI X C, SHI C Y, et al. Study on the antioxidant activity of Lycium barbarum polysaccharide and its hydrolyzed products[J]. China Vegetables, 2014, 34(4): 1-7.
    [6]
    曾斌芬, 时瑞, 吴曼铃, 等. 褐藻胶寡糖的功能特性研究进展[J]. 食品研究与开发,2022,43(13):210−216. [ZENG B F, SHI R, WU M L, et al. Research progress in functional properties of alginate oligosaccharides[J]. Food Research and Development,2022,43(13):210−216.

    ZENG B F, SHI R, WU M L, et al. Research progress in functional properties of alginate oligosaccharides[J]. Food Research and Development, 2022, 43(13): 210-216.
    [7]
    张海芸, 贺亮, 李琴, 等. 降解对植物多糖理化性质以及生物活性影响的研究[J]. 食品与发酵科技,2019,55(3):15−19. [ZHANG H Y, HE L, LI Q, et al. Effects of degradation on physicochemical properties and bioactivity of plant polysaccharides[J]. Food and Fermentation Sciences & Technology,2019,55(3):15−19.

    ZHANG H Y, HE L, LI Q, et al. Effects of degradation on physicochemical properties and bioactivity of plant polysaccharides[J]. Food and Fermentation Sciences & Technology, 2019, 55(3): 15-19.
    [8]
    谭诗敏, 罗志刚, 程建华. H2O2-VC降解对香水莲花多糖结构与活性的影响[J]. 食品科学,2021,42(24):48−53. [TAN S M, LUO Z G, CHENG J H. Effect of H2O2-VC degradation on the structure and activity of polysaccharide from Perfumed lotus flower[J]. Food Science,2021,42(24):48−53.

    TAN S M, LUO Z G, CHENG J H. Effect of H2O2-VC degradation on the structure and activity of polysaccharide from Perfumed lotus flower[J]. Food Science, 2021, 42(24): 48-53.
    [9]
    牛天羽, 刘洪章, 刘树英. 4个桑树品种桑葚多糖提取条件的优化及其含量比较[J]. 湖南农业科学,2014,2(17):53−56. [NIU T Y, LIU H Z, LIU S Y. Optimization of extraction conditions and content comparison of polysaccharides from four mulberry cultivars[J]. Hunan Agricultural Sciences,2014,2(17):53−56.

    NIU T Y, LIU H Z, LIU S Y. Optimization of extraction conditions and content comparison of polysaccharides from four mulberry cultivars[J]. Hunan Agricultural Sciences, 2014, 2(17): 53-56.
    [10]
    赵婷婷. 不同分子量坛紫菜多糖的制备及其抗衰老活性研究[D]. 青岛: 中国科学院研究生院(海洋研究所), 2007: 25−38

    ZHAO T T. Preparation of different molecular weight polysaccharides from Porphyra haitanensis and their anti-aging activity[D]. Qingdao: Graduate School of Chinese Academy of Sciences (Institute of Ocean Research), 2007: 25−38.
    [11]
    叶春苗, 李莉峰, 韩艳秋. 水浸提法提取紫菜多糖生产工艺优化[J]. 农产品加工,2022,562(20):33−35,38. [YE C M, LI L F, HAN Y Q. Optimization of production process for extracting Porphyra polysaccharide by water extraction[J]. The Processing of Agricultural Products,2022,562(20):33−35,38.

    YE C M, LI L F, HAN Y Q. Optimization of production process for extracting porphyra polysaccharide by water extraction[J]. The processing of agricultural products, 2022, 562(20): 33-35, 38.
    [12]
    曹慧馨, 吴迪, 王旭升, 等. 黑木耳多糖的降解及其产物抗氧化性[J]. 食品研究与开发,2022,43(10):15−21. [CAO H X, WU D, WANG X S, et al. Degradation of polysaccharide from Auricularia auriculata and its antioxidant activity[J]. Food Research and Development,2022,43(10):15−21.

    CAO H X, WU D, WANG X S, et al. Degradation of Polysaccharide from Auricularia auriculata and its antioxidant activity[J]. Food Research and Development, 2022, 43(10): 15-21.
    [13]
    KUMAR V, RANA V, SONI P L, et al. Molecular weight determination and correlation analysis of Dalbergia sissoo polysaccharide with constituent oligosaccharides[J]. Phytochemical Analysis,2013,24(1):75−80. doi: 10.1002/pca.2384
    [14]
    KAMALOVA D I, ABDRAZAKOVA L R. IR spectroscopic analysis of the supramolecular structure of a polyvinylidene-based polymer system[J]. Bulletin of the Russian Academy of Sciences,2022,85(12):1363−1366.
    [15]
    张韬. 一枝黄花植物粗多糖提取工艺及抗氧化活性研究[D]. 杭州: 浙江海洋大学, 2021: 45−46

    ZHANG T. Study on extraction technology and antioxidant activity of crude polysaccharide from Solidago plant[D]. Hangzhou: Zhejiang Ocean University, 2021: 45−46.
    [16]
    韩梦瑶, 李新月, 王晓梅, 等. 大口黑鲈鱼皮胶原蛋白肽的制备及抗氧化活性研究[J]. 食品与机械,2022,38(4):175−182,194. [HAN M Y, LI X Y, WANG X M, et al. Preparation and antioxidant activity of collagen peptide from Largemouth bass Skin[J]. Food & Machinery,2022,38(4):175−182,194.

    HAN M Y, LI X Y, WANG X M, et al. Preparation and antioxidant activity of collagen peptide from Largemouth bass Skin[J]. Food & Machinery, 2022, 38(4): 175-182, 194.
    [17]
    吴磊, 吴静, 胡居吾, 等. 白莲莲子皮多糖的理化性质及免疫调节活性[J]. 现代食品科技,2021,129(5):100−108. [WU L, WU J, HU J W, et al. Physicochemical properties and immunomodulatory activities of polysaccharides from White Lotus seed skin[J]. Modern Food Science and Technology,2021,129(5):100−108.

    Physicochemical properties and immunomodulatory activities of polysaccharides from White Lotus seed skin[J]. Modern Food Science and Technology, 2021, 129(5): 100-108.
    [18]
    JING Y S, HU J Y, SU Z T, et al. Structural characterization and antioxidant activities in vitro and in vivo of a novel polysaccharide from Salvia miltiorrhiza[J]. Natural Product Research,2022,27(14):1−6.
    [19]
    THAMBIRAJ S R, REDDY N, PHILLIPS M. et al. Biological activities and characterization of polysaccharides from the three Australian Sweet Lupins[J]. International Journal of Food Properties,2019,22(1):522−535. doi: 10.1080/10942912.2019.1588298
    [20]
    刘斌雄, 孙冲, 方婷. 过氧化氢抗坏血酸法制备小分子量鲍鱼脏器多糖工艺研究[J]. 食品安全质量检测学报,2022,13(17):5563−5569. [LIU B X, SUN C, FANG T. Preparation of small molecular weight abalone polysaccharide by hydrogen peroxide ascorbic acid[J]. Journal of Food Safety & Quality,2022,13(17):5563−5569.

    LIU B X, SUN C, FANG T. Preparation of small molecular weight abalone polysaccharide by hydrogen peroxide ascorbic acid[J]. Journal of Food Safety & Quality, 2022, 13(17): 5563-5569.
    [21]
    WANG S Q, YANG X M, HOU X N, et al. Structural characterization and protective effect on PC12 cells against H2O2-induced oxidative damage of a polysaccharide from Isaria cicadae Miquel mycelium and its zinc derivative[J]. Process Biochemistry,2022,122(2):272−281.
    [22]
    周鸿立, 李亚平, 赵鹤鹏. 一种玉米须多糖中糖醛酸含量的测定方法及其抗氧化作用: CN107976413A[P]. 2018-05-01. https://kns-cnki-net-443.webvpn.zafu.edu.cn/kcms/detail/detail.aspx?FileName=CN107976413A&DbName=SCPD2018

    ZHOU H L, LI Y P, ZHAO H P. A method for determination of uronic acid content in corn whisker polysaccharide and its antioxidant effect: CN107976413A[P]. 2018-05-01. https://kns-cnki-net-443.webvpn.zafu.edu.cn/kcms/detail/detail.aspx?FileName=CN107976413A&DbName=SCPD2018.
    [23]
    蔡亚岐, 牛红云, 何东伟. 保持Fenton体系长效催化活性的铁碳微电解材料的制备及应用: CN110252305A[P]. 2019-09-20. https://kns-cnki-net-443.webvpn.zafu.edu.cn/kcms/detail/detail.aspx?FileName=CN110252305B & DbName=SCPD2020

    CAI Y Q, NIU H Y, HE W D. Preparation and application of iron-carbon microelectrolytic materials maintaining long-term catalytic activity of Fenton system: CN110252305A[P]. 2019-09-20. https://kns-cnki-net-443.webvpn.zafu.edu.cn/kcms/detail/detail.aspx?FileName=CN110252305B & DbName=SCPD2020.
    [24]
    戴伟, 刘新义, 胡雄彬, 等. 香菇多糖的分子量和结构与生物活性之间的关系[J]. 中南药学,2012,10(6):453−456. [DAI W, LIU X Y, HU X B, et al. The Relationship between molecular weight and structure of lentinan and its biological activity[J]. Central South Pharmacy,2012,10(6):453−456.

    DAI W, LIU X Y, HU X B, et al. The Relationship between molecular weight and Structure of Lentinan and its biological activity[J]. Central South Pharmacy, 2012, 10(6): 453-456.
    [25]
    郑宇. 微波与H2O2协同降解黑木耳多糖及其产物抗氧化活性、流变性质研究[D]. 沈阳: 沈阳农业大学, 2020: 23−28

    ZHENG Y. Study on antioxidant activity and rheological properties of Auricularia auricularia polysaccharide and its products by microwave and H2O2[D]. Shengyang: Shenyang Agricultural University, 2020: 23−28.
    [26]
    周保柱, 洪慧, 张培, 等. 不同产地菊花多糖的抗氧化活性研究[J]. 华西药学杂志,2019,34(3):209−212. [ZHOU B Z, HONG H, ZHANG P, et al. Study on the antioxidant activity of Chrysanthemum polysaccharides from different habitats[J]. West China Journal of Pharmaceutical Sciences,2019,34(3):209−212.

    ZHOU B Z, HONG H, ZHANG P, et al. Study on the antioxidant activity of Chrysanthemum polysaccharides from different habitats[J]. West China Journal of Pharmaceutical Sciences, 2019, 34(3): 209-212.
    [27]
    袁清霞. 桑叶多糖分离纯化、结构分析及生物活性研究[D]. 南京: 南京农业大学, 2016: 96−106

    YUANG Q X. Separation, purification, structure analysis and bioactivity of polysaccharide from Mulberry Leaf[D]. Nanjing: Nanjing Agricultural University, 2016: 96−106.
    [28]
    宋晨光. 植物多糖抗氧化活性研究进展[J]. 中国果菜,2022,42(4):25−33. [SONG C G. Research progress in antioxidant activity of plant polysaccharides[J]. China Vegetables,2022,42(4):25−33.

    SONG C G. Research progress in antioxidant activity of plant polysaccharides[J]. China Vegetables, 2022, 42(4): 25-33.
    [29]
    WANG Q H, SHU Z P, XU B Q, et al. Structural characterization and antioxidant activities of polysaccharides from Citrus auranitium L[J]. International Journal of Biological Macromolecules,2014,67(1):112−123.
    [30]
    QU J L, HUANG P, QIU Y, et al. Hepatoprotective effect of plant polysaccharides from natural resources: A review of the mechanisms and structure-activity relationship[J]. International Journal of Biological Macromolecules,2020,161:24−34. doi: 10.1016/j.ijbiomac.2020.05.196
    [31]
    张皓哲, 高春红, 李天铎, 等. 胶原和明胶清除羟基自由基机理探究[J]. 齐鲁工业大学学报,2022,36(3):32−38. [ZHANG H Z, GAO C H, LI T D, et al. Study on the mechanism of collagen and gelatin scavenging hydroxyl radicals[J]. Journal of Qilu University of Technology,2022,36(3):32−38.

    ZHANG H Z, GAO C H, LI T D, et al. Study on the mechanism of Collagen and Gelatin scavenging hydroxyl radicals[J]. Journal of Qilu University of Technology, 2022, 36(3): 32-38.
    [32]
    赵炳杰, 郭岩彬. 食用菌多糖的提取纯化及生物活性研究进展[J]. 中国生物工程杂志,2022,42(Z1):146−159. [ZHAO B J, GUO Y B. Advances in extraction, purification and bioactivity of polysaccharides from edible fungi[J]. China Biotechnology,2022,42(Z1):146−159.

    ZHAO B J, GUO Y B. Advances in extraction, purification and bioactivity of polysaccharides from edible fungi[J]. China Biotechnology, 2022, 42(Z1): 146-159.
    [33]
    陈建新, 徐国鹏, 肖妍, 等. 抗坏血酸根化学还原对铁基催化剂UV-Fenton体系的影响[J]. 安全与环境学报,2021,21(6):2750−2760. [CHEN J X, XU G P, XIAO Y, et al. Effect of chemical reduction of ascorbate on UV-Fenton system of Iron based Catalyst[J]. Journal of Safety and Environment,2021,21(6):2750−2760.

    CHEN J X, XU G P, XIAO Y, et al. Effect of chemical reduction of ascorbate on UV-Fenton system of Iron based Catalyst[J]. Journal of Safety and Environment, 2021, 21(6): 2750-2760.
    [34]
    龚志华. 茯苓辐照降解及其产物生物活性研究[D]. 长沙: 湖南农业大学, 2010: 28−33

    GONG Z H. Irradiation degradation of Poria cocos and bioactivity of its products[D]. Changsha: Hunan Agricultural University, 2010: 28−33.
    [35]
    GONG P, LONG H, GUO Y X, et al. Isolation, Structural characterization, and hypoglycemic activities in vitro of polysaccharides from Pleurotus eryngii[J]. Molecules,2022,27(20):7140−7158. doi: 10.3390/molecules27207140
    [36]
    ZHU W L, XUE X P, ZHANG Z J, et al. Ultrasonic-assisted extraction, structure and antitumor activity of polysaccharide from Polygonum multiflorum[J]. International Journal of Biological Macromolecules,2016,91(2):132−142.
    [37]
    CAI L L, ZOU S S, LIANG D P, et al. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix[J]. Carbohydrate Polymers,2018,184(3):354−365.

Catalog

    Article Metrics

    Article views (117) PDF downloads (15) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return