ZHENG Yi, LI Shiying, LI Chuang, et al. Preparation, in Vitro Gastrointestinal Digestion and Antioxidant Activity of Ginkgo biloba Peptides-Zinc Chelate[J]. Science and Technology of Food Industry, 2023, 44(17): 420−427. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110135.
Citation: ZHENG Yi, LI Shiying, LI Chuang, et al. Preparation, in Vitro Gastrointestinal Digestion and Antioxidant Activity of Ginkgo biloba Peptides-Zinc Chelate[J]. Science and Technology of Food Industry, 2023, 44(17): 420−427. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110135.

Preparation, in Vitro Gastrointestinal Digestion and Antioxidant Activity of Ginkgo biloba Peptides-Zinc Chelate

More Information
  • Received Date: November 13, 2022
  • Available Online: July 04, 2023
  • The aim of this study was to optimize the preparation process of Ginkgo biloba peptides-zinc chelate (Zn-GBP), and analyze its in vitro gastrointestinal digestion and antioxidant activity. The preparation process of Zn-GBP was optimized by single factor test and response surface method. The bioavailability of zinc ions in the Zn-GBP was determined by in vitro simulated gastrointestinal digestion. Furthermore, the in vitro antioxidant activity of Zn-GBP was evaluated using DPPH free radical scavenging ability, ABTS+ free radical scavenging ability and reducing ability. The results showed that the optimum preparation parameters were as follows: mass ratio of Ginkgo biloba peptides to zinc 3:1, chelating pH 8.2, chelating temperature 70 ℃, and chelating time 2 h. Under these parameters, the chelation rate was 49.23%±0.35%, and the chelate yield was 42.34%±0.45%. The solubility and permeability of zinc ions in Zn-GBP were significantly higher than those in inorganic zinc salts (P<0.05), indicating that Zn-GBP had better bioavailability. Zn-GBP showed strong scavenging activities against DPPH free radical and ABTS+ free radical, with EC50 values of 101.0 and 83.6 mg/L, respectively, and it also has strong reducing ability. Moreover, the in vitro antioxidant activity of Zn-GBP was higher than that of Ginkgo biloba peptides.
  • [1]
    杨月欣. 中国食物成分表: 第一册[M]. 北京: 北京大学医学出版社, 2018: 116−117.

    YANG Y X. Table of Chinese Food ingredients: Volume one[M]. Beijing: Peking University Medical Press, 2018: 116−117.
    [2]
    黄文. 白果活性蛋白的分离、纯化、结构及其生物活性研究[D]. 武汉: 华中农业大学, 2002: 51−64.

    HUANG W. Studies on the separation, purification, structure of ginkgo seed protein and its biological activities[D]. Wuhan: Huazhong Agricultural University, 2002: 51−64.
    [3]
    赵珮妮, 和法涛, 宋烨, 等. 白果的特异生物活性和药理作用研究进展[J]. 化工进展,2017,36(S1):366−371. [ZHAO P N, HE FT, SONG Y, et al. Research progress of specific bioactivity and pharmacological action of ginkgo seeds[J]. Chemical Industry and Engineering Progress,2017,36(S1):366−371.

    ZHAO P N, HE FT, SONG Y, et al. Research progress of specific bioactivity and pharmacological action of Ginkgo seeds[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 366-371.
    [4]
    张焕新, 臧大存, 刘靖, 等. 银杏肽的抗氧化性研究[J]. 食品研究与开发,2008,29(12):27−29. [ZHANG H X, ZANG D C, LIU J, et al. Antioxidant activity of ginkgo peptides[J]. Food Research and Development,2008,29(12):27−29.

    ZHANG H X, ZANG D C, LIU J, et al. Antioxidant activity of ginkgo peptides[J]. Food Research and Development, 2008, 29(12): 27-29.
    [5]
    贾韶千, 吴彩娥, 范龚健, 等. 双酶法制备银杏抗氧化肽工艺研究[J]. 食品科学,2011,32(21):201−206. [JIA S Q, WU C E, FAN G J, et al. Preparation of antioxidant peptides derived from Ginkgo biloba Kernel by dual-enzymatic method[J]. Food Science,2011,32(21):201−206.

    JIA S Q, WU C E, FAN G J, et al. Preparation of antioxidant peptides derived from Ginkgo biloba Kernel by dual-enzymatic method[J]. Food Science, 2011, 32(21): 201-206.
    [6]
    贾韶千, 吴彩娥, 范龚健, 等. 银杏抗氧化肽的分离纯化及活性鉴定[J]. 农业机械学报,2011,42(6):152−155. [JIA S Q, WU C E, FAN G J, et al. Purification and activity identification of ginkgo antioxidant peptide[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(6):152−155.

    JIA S Q, WU C E, FAN G J, et al. Purification and activity identification of ginkgo antioxidant peptide[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 152-155.
    [7]
    MA F F, WANG H, WEI C K, et al. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism[J]. Frontiers in Pharmacology,2019(9):1579. doi: 10.3389/fphar.2018.01579
    [8]
    SUN W, WU C, FAN G, et al. Preparation of a functional beverage with α-glucosidase inhibitory peptides obtained from ginkgo seeds[J]. Journal of Food Science and Technology,2021,58(12):4495−4503. doi: 10.1007/s13197-020-04931-3
    [9]
    郑义, 李诗颖, 李闯, 等. 银杏肽对高脂膳食诱导的高脂血症小鼠的降脂作用[J]. 食品工业科技,2022,43(17):417−423. [ZHENG Y, LI S Y, LI C, et al. Lipid-lowering effect of Ginkgo biloba peptides on high-fat diet induced hyperlipidemia in mice[J]. Science and Technology of Food Industry,2022,43(17):417−423.

    ZHENG Y, LI S Y, LI C, et al. Lipid-lowering effect of Ginkgo biloba peptides on high-fat diet induced hyperlipidemia in mice[J]. Science and Technology of Food Industry, 2022, 43(17): 417-423.
    [10]
    郑义, 李诗颖, 糜心怡, 等. 银杏肽对急性酒精性肝损伤小鼠的保护作用[J]. 食品与发酵工业,2021,47(21):109−114. [ZHENG Y, LI S Y, MI X Y, et al. Protective effect of Ginkgo biloba peptides on acute alcoholic liver injury in mice[J]. Food and Fermentation Industries,2021,47(21):109−114.

    ZHENG Y, LI S Y, MI X Y, et al. Protective effect of Ginkgo biloba peptides on acute alcoholic liver injury in mice[J]. Food and Fermentation Industries, 2021, 47(21): 109-114.
    [11]
    杨月欣, 葛可佑. 中国营养科学全书[M]. 北京: 人民卫生出版社, 2019: 141−145.

    YANG Y X, GE K Y. An overview of Nutrition Sciences[M]. Beijing: People's Medical Publishing House, 2019: 141−145.
    [12]
    秦立强, 李德明, 杨晓光. 锌的膳食参考摄入量研究进展[J]. 卫生研究,2022,51(4):523−525. [QIN L Q, LI D M, YANG X G. Research progress of dietary reference intake of zinc[J]. Journal of Hygiene Research,2022,51(4):523−525.

    QIN L Q, LI D M, YANG X G. Research progress of dietary reference intake of zinc[J]. Journal of Hygiene Research, 2022, 51(4): 523-525.
    [13]
    王子怀, 胡晓, 李来好, 等. 肽-金属离子螯合物的研究进展[J]. 食品工业科技,2014,35(8):359−363. [WANG Z H, HU X, LI L H, et al. Research progress in peptide-mineral ion complexes[J]. Science and Technology of Food Industry,2014,35(8):359−363.

    WANG Z H, HU X, LI L H, et al. Research progress in peptide-mineral ion complexes[J]. Science and Technology of Food Industry, 2014, 35(8): 359-363.
    [14]
    ZHANG Z, ZHOU F, LIU X, et al. Particulate nanocomposite from oyster (Crassostrea rivularis) hydrolysates via zinc chelation improves zinc solubility and peptide activity[J]. Food Chemistry,2018,258:269−277. doi: 10.1016/j.foodchem.2018.03.030
    [15]
    WANG B, XIAO S, CHEN X, et al. Structural characterisation, gastrointestinal digestion stability and transepithelial transport study of casein peptide–zinc chelate[J]. International Journal of Food Science & Technology,2022,57(5):2770−2778.
    [16]
    LIU T, JI X, ZOU L, et al. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy[J]. Frontiers in Nutrition, 2022: 1743.
    [17]
    郑英敏, 袁杨, 苏东晓, 等. 大豆多肽-锌螯合物的制备工艺优化及其结构表征[J]. 食品工业科技,2020,41(14):160−165. [ZHENG YM, YUAN Y, SU D X. Preparation process optimization of soy peptides-zinc chelate and its structural characterization[J]. Science and Technology of Food Industry,2020,41(14):160−165.

    ZHENG YM, YUAN Y, SU D X. Preparation process optimization of soy peptides-zinc chelate and its structural characterization[J]. Science and Technology of Food Industry, 2020, 41(14): 160-165.
    [18]
    李诗颖, 陈琳, 糜心怡, 等. 提取方法对银杏蛋白功能特性及抗氧化活性的影响[J]. 食品工业科技,2021,42(20):37−43. [LI S Y, CHEN L, MI X Y, et al. Effects of extraction methods on functional properties and antioxidant activity of Ginkgo biloba proteins[J]. Science and Technology of Food Industry,2021,42(20):37−43.

    LI S Y, CHEN L, MI X Y, et al. Effects of extraction methods on functional properties and antioxidant activity of Ginkgo biloba proteins[J]. Science and Technology of Food Industry, 2021, 42(20): 37-43.
    [19]
    SUN R, LIU X, YU Y, et al. Preparation process optimization, structural characterization and in vitro digestion stability analysis of Antarctic krill (Euphausia superba) peptides-zinc chelate[J]. Food Chemistry,2021,340:128056. doi: 10.1016/j.foodchem.2020.128056
    [20]
    ORAIZA M. Studies on product of browning reaction prepared from glucosamine[J]. Japanese Journal of Nutrition,1986,44:307−315.
    [21]
    富天昕, 张舒, 盛亚男, 等. 绿豆多肽锌螯合物的制备及其结构与体外消化的分析[J]. 食品科学,2020,41(4):59−66. [FU T X, ZHANG S, SHENG Y N, et al. Preparation, structure and in vitro digestibility of zinc-chelating mung bean peptide[J]. Food Science,2020,41(4):59−66.

    FU T X, ZHANG S, SHENG Y N, et al. Preparation, structure and in vitro digestibility of zinc-chelating mung bean peptide[J]. Food Science, 2020, 41(4): 59-66.
    [22]
    王小林, 孔祥珍, 华欲飞, 等. 大豆分离蛋白肽钙螯合物的制备及表征[J]. 中国油脂,2017,42(7):50−54. [WANG X L, KONG X Z, HUA Y F, et al. Preparation and characterization of soybean protein isolate peptide-calcium chelate[J]. China Oils and Fats,2017,42(7):50−54.

    WANG X L, KONG X Z, HUA Y F, et al. Preparation and characterization of soybean protein isolate peptide-calcium chelate[J]. China Oils and Fats, 2017, 42(7): 50-54.
    [23]
    吴明泽, 王垒, 王笑, 等. 鸡胚肽锌螯合物的制备工艺及免疫调节功能研究[J]. 食品工业科技,2020,41(12):126−132. [WU M Z, WANG L, WANG X, et al. Preparation of chicken embryo peptide zinc chelate and its immunoregulatory function[J]. Science and Technology of Food Industry,2020,41(12):126−132.

    WU M Z, WANG L, WANG X, et al. Preparation of chicken embryo peptide zinc chelate and its immunoregulatory function[J]. Science and Technology of Food Industry, 2020, 41(12): 126-132.
    [24]
    柯枭, 胡晓, 杨贤庆, 等. 罗非鱼皮胶原蛋白肽-锌螯合物的制备及结构表征与体外消化分析[J]. 食品与发酵工业,2021,47(14):38−44. [KE X, HU X, YANG X Q, et al. Preparation, structure characterization and in vitro gastrointestinal digestion of tilapia skin collagen peptide-zinc chelate[J]. Food and Fermentation Industries,2021,47(14):38−44.

    KE X, HU X, YANG X Q, et al. Preparation, structure characterization and in vitro gastrointestinal digestion of tilapia skin collagen peptide-zinc chelate[J]. Food and Fermentation Industries, 2021, 47(14): 38-44.
    [25]
    CHEN D, LIU Z Y, HUANG W Q, et al. Purification and characterisation of a zinc-binding peptide from oyster protein hydrolysate[J]. Journal of Functional Food,2013,5(2):689−697. doi: 10.1016/j.jff.2013.01.012
    [26]
    包怡红, 王芳, 王文琼. 大豆多肽硒螯合物的制备及抗氧化活性分析[J]. 食品科学,2013,34(16):27−32. [BAO Y H, WANG F, WANG W Q. Preparation and antioxidant activity of selenium-chelating soybean peptides[J]. Food Science,2013,34(16):27−32.

    BAO Y H, WANG F, WANG W Q. Preparation and antioxidant activity of selenium-chelating soybean peptides[J]. Food Science, 2013, 34(16): 27-32.
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (120) PDF downloads (24) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return