DU Meiling, CHEN Zhihong, ZHU Xuanchi, et al. Response Surface and Particle Swarm-Artificial Neural Network Model Optimize the Microwave-assisted Extraction of Paeoniflorin[J]. Science and Technology of Food Industry, 2023, 44(15): 248−257. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110133.
Citation: DU Meiling, CHEN Zhihong, ZHU Xuanchi, et al. Response Surface and Particle Swarm-Artificial Neural Network Model Optimize the Microwave-assisted Extraction of Paeoniflorin[J]. Science and Technology of Food Industry, 2023, 44(15): 248−257. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110133.

Response Surface and Particle Swarm-Artificial Neural Network Model Optimize the Microwave-assisted Extraction of Paeoniflorin

More Information
  • Received Date: November 13, 2022
  • Available Online: June 05, 2023
  • The effects of the following independent variables-micro intensity, extraction time, ethanol concentration, and solvent-to-solid ratio on the extraction yield of paeoniflorin from Paeoniae Radix Rubra were examined by single factor test and Box-Behnken design. The antioxidant activity in vitro of extractions was also assessed. Then, the paeoniflorin extraction process was optimized using the response surface methodology (RSM) and particle swarm optimization-artificial neural network (PSO-ANN). Results showed that the prediction and optimization performance of PSO-ANN was better than RSM, that with the correlation coefficient R2 was 0.9925 and 0.9099, respectively. The optimized extraction conditions by PSO-ANN were as follows: Ethanol concentration (81% v/v), solvent-to-solid ratio (30 mL/g), extraction time (22 s), extractions (5 times), and micro intensity (420 W). Under the optimized parameters, the extraction yield of paeoniflorin was 378.977±1.982 mg PE/g d.w.. The scavenging rates of paeoniflorin extract (100 μg/mL) on DPPH and ABTS+ free radicals were 87.61% and 80.74% respectively, that closed to the positive control. The extract also had a certain reduction ability. The results of this study provide a new method for optimizing the extraction process, as well as provide a theoretical basis for the application of effective components of Paeoniae Radix Rubra as additives.
  • [1]
    ZHAN H, FANG J, TANG L, et al. Application of near-infrared spectroscopy for the rapid quality assessment of Radix Paeoniae Rubra[J]. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2017,183:75−83. doi: 10.1016/j.saa.2017.04.034
    [2]
    CHAN K W, IQBAL S, KHONG N M H, et al. Antioxidant activity of phenolics-saponins rich fraction prepared from defatted kenaf seed meal[J]. LWT-Food Science and Technology,2014,56(1):181−186. doi: 10.1016/j.lwt.2013.10.028
    [3]
    ZHANG L, WEI W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacology & Therapeutics,2020,207(c):107452.
    [4]
    MAHMOUD B, HEDAYATOLLAH S, MAHMOUD M, et al. A review on ethnobotanical and therapeutic uses of fenugreek (Trigonella foenum-graceum L.)[J]. Journal of Evidence-based Complementary & Alternative Medicine,2016,21(1):53−62.
    [5]
    IQBAL J, ABBASI B A, MAHMOOD T, et al. Plant-derived anticancer agents: A green anticancer approach[J]. Asian Pacific Journal of Tropical Biomedicine,2017,7(12):1129−1150. doi: 10.1016/j.apjtb.2017.10.016
    [6]
    YAN B, SHEN M, FANG J, et al. Advancement in the chemical analysis of Paeoniae Radix (Shaoyao)[J]. Journal of Pharmaceutical and Biomedical Analysis,2018,160:276−288. doi: 10.1016/j.jpba.2018.08.009
    [7]
    AKBARI S, ABDURAHMAN N H, YUNUS R M, et al. Microwave-assisted extraction of saponin, phenolic and flavonoid compounds from Trigonella foenum-graecum seed based on two level factorial design[J]. Journal of Applied Research on Medicinal and Aromatic Plants,2019,14(c):100212−100212.
    [8]
    CHEN F, MO K, ZHANG Q, et al. A novel approach for distillation of paeonol and simultaneous extraction of paeoniflorin by microwave irradiation using an ionic liquid solution as the reaction medium[J]. Separation and Purification Technology,2017,183:73−82. doi: 10.1016/j.seppur.2017.03.069
    [9]
    XIN Q, YUAN R, SHI W, et al. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders[J]. Life Sciences,2019,237(c):116925.
    [10]
    WU C, LI B, ZHANG Y, et al. Intranasal delivery of paeoniflorin nanocrystals for brain targeting[J]. Asian Journal of Pharmaceutical Sciences,2020,15(3):326−335. doi: 10.1016/j.ajps.2019.11.002
    [11]
    WANG Y, ZHU Y, LU S, et al. Beneficial effects of paeoniflorin on osteoporosis induced by high-carbohydrate, high-fat diet-associated hyperlipidemia in vivo[J]. Biochemical and Biophysical Research Communications,2018,498(4):981−987. doi: 10.1016/j.bbrc.2018.03.093
    [12]
    MA Z, CHU L, LIU H, et al. Paeoniflorin alleviates non-alcoholic steatohepatitis in rats: Involvement with the ROCK/NF-κB pathway[J]. International Immunopharmacology,2016,38:377−384. doi: 10.1016/j.intimp.2016.06.023
    [13]
    YU X, FAN Z, HAN Y, et al. Paeoniflorin reduces neomycin-induced ototoxicity in hair cells by suppression of reactive oxygen species generation and extracellularly regulated kinase signalization[J]. Toxicology Letters,2018,285:9−19. doi: 10.1016/j.toxlet.2017.12.026
    [14]
    WEI M C, YANG Y C. Kinetic studies for ultrasound-assisted supercritical carbon dioxide extraction of triterpenic acids from healthy tea ingredient Hedyotis diffusa and Hedyotis corymbosa[J]. Separation and Purification Technology,2015,142:316−325. doi: 10.1016/j.seppur.2015.01.008
    [15]
    LIN K P, DONG Y, HUANG X Y. GA-ANN forecast model for typhoon gale in south China sea based on MDS[J]. Applied Mechanics and Materials,2014,3207(556-562):5618−5622.
    [16]
    KUSUMA H S, SYAHPUTRA M E, PARASANDI D, et al. Optimization of microwave hydrodistillation of dried patchouli leaves by response surface methodology[J]. Rasayan Journal of Chemistry,2017,10(3):861−865.
    [17]
    HSK A, ANA B, HD C, et al. Evaluation of extract of Ipomoea batatas leaves as a green coagulant-flocculant for turbid water treatment: Parametric modelling and optimization using response surface methodology and artificial neural networks [J]. Environmental Technology & Innovation, 2021, 24.
    [18]
    HOPFIELD J J. Artificial neural networks[J]. IEEE Circuits & Devices Magazine,1988,4(5):3−10.
    [19]
    SHI X L. Development and application of artificial neural network[J]. Journal of Chongqing University of Science and Technology (Natural Sciences Edition),2006(2):99−101, 110.
    [20]
    MING J, TAIP F S, ANUAR M S, et al. Optimization of genetic algorithm parameter in hybrid genetic algorithm-neural network modelling: Application to spray drying of coconut milk[J]. IOP Conference Series Materials Science and Engineering,2020,991(1):012139. doi: 10.1088/1757-899X/991/1/012139
    [21]
    ZHANG S, YUAN Y, LIU C, et al. Modeling and optimization of porous aerogel adsorbent for removal of cadmium from crab viscera homogenate using response surface method and artificial neural network [J]. LWT-Food Science & Technology, 2021, 150.
    [22]
    AZMIR J, ZAIDUL I S M, RAHMAN M M, et al. Techniques for extraction of bioactive compounds from plant materials: A review[J]. Journal of Food Engineering,2013,117(4):426−436. doi: 10.1016/j.jfoodeng.2013.01.014
    [23]
    THENGYAI S, THIANTONGIN P, SONTIMUANG C, et al. α-Glucosidase and α-amylase inhibitory activities of medicinal plants in Thai antidiabetic recipes and bioactive compounds from Vitex glabrata stem bark[J]. Journal of Herbal Medicine,2020,19(7):100302.
    [24]
    孟庆宽, 仇瑞承, 张漫, 等. 基于改进粒子群优化模糊控制的农业车辆导航系统[J]. 农业机械学报,2015,46(3):29−36, 58. [MENG Q K, QIU R C, ZHANG M, et al. Agricultural vehicle navigation system based on improved particle swarm optimization fuzzy control[J]. Journal of Agricultural Machinery,2015,46(3):29−36, 58. doi: 10.6041/j.issn.1000-1298.2015.03.005

    MENG Q K, QIU R C, ZHANG M, et al. Agricultural vehicle navigation system based on improved particle swarm optimization fuzzy control[J]. Journal of Agricultural Machinery, 2015, 46(3): 29-36, 58. doi: 10.6041/j.issn.1000-1298.2015.03.005
    [25]
    沈花玉, 王兆霞, 高成耀, 等. BP神经网络隐含层单元数的确定[J]. 天津理工大学学报,2008,24(5):13−15. [SHEN H Y, WANG Z X, GAO C Y, et al. Determination of the number of hidden layers of BP neural network[J]. Journal of Tianjin University of Technology,2008,24(5):13−15. doi: 10.3969/j.issn.1673-095X.2008.05.004

    SHEN H Y, WANG Z X, GAO C Y, et al. Determination of the number of hidden layers of BP neural network[J]. Journal of Tianjin University of Technology, 2008, 24(5): 13-15. doi: 10.3969/j.issn.1673-095X.2008.05.004
    [26]
    周晓君, 柳英键, 徐冲冲, 等. 一种自适应拟牛顿-状态转移混合智能优化算法及应用[J]. 控制与决策,2021,36(10):2451−2458. [ZHOU X J, LIU Y J, XU C C, et al. An adaptive quasi-Newton-state transfer hybrid intelligent optimization algorithm and its application[J]. Control and Decision-making,2021,36(10):2451−2458. doi: 10.13195/j.kzyjc.2020.0214

    ZHOU X J, LIU Y J, XU C C, et al. An adaptive quasi-Newton-state transfer hybrid intelligent optimization algorithm and its application[J]. Control and Decision-making, 2021, 36(10): 2451-2458. doi: 10.13195/j.kzyjc.2020.0214
    [27]
    TIAN Y Q, ZHAO H T, ZHANG X L, et al. Comparison of different extraction techniques and optimization of the microwave-assisted extraction of saponins from Aralia elata (Miq.) Seem fruits and rachises[J]. Chemical Papers,2020,74:1−11. doi: 10.1007/s11696-019-00982-9
    [28]
    SZERLAUTH A, MURATH S, VISKI S, et al. Radical scavenging activity of plant extracts from improved processing[J]. Heliyon,2019,5(11):e02763. doi: 10.1016/j.heliyon.2019.e02763
    [29]
    LIU D, GUO Y, WU P, et al. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities[J]. Food Chemistry,2020,311(c):125960.
    [30]
    RAFIQUE R, KHAN K M, ARSHIA, et al. Synthesis, in vitro α-amylase inhibitory, and radicals (DPPH & ABTS) scavenging potentials of new n-sulfonohydrazide substituted indazoles[J]. Bioorganic Chemistry,2019,94:103410.
    [31]
    PUTTA S. Biological and phytopharmacological descriptions of Litchi chinensis[J]. Pharmacognosy Reviews,2016,10(19):60−65. doi: 10.4103/0973-7847.176548
    [32]
    RAMLI N H, YUSUP S, QUITAIN A T, et al. Optimization of saponin extracts using microwave-assisted extraction as a sustainable biopesticide to reduce Pomacea canaliculata population in paddy cultivation[J]. Sustainable Chemistry and Pharmacy,2019,11:23−35. doi: 10.1016/j.scp.2018.12.002
    [33]
    FAN Y, LI Z, LIU L, et al. Combination of liquid-phase pulsed discharge and ultrasonic for saponins extraction from lychee seeds[J]. Ultrasonics Sonochemistry,2020,69:105264. doi: 10.1016/j.ultsonch.2020.105264
    [34]
    WANG T, GUO N, WANG S X, et al. Ultrasound-negative pressure cavitation extraction of phenolic compounds from blueberry leaves and evaluation of its DPPH radical scavenging activity[J]. Food and Bioproducts Processing,2018,108:69−80. doi: 10.1016/j.fbp.2018.01.003
    [35]
    KHUBBER S, MISRA N N, YADAV S K. Extraction of pectin from black carrot pomace using intermittent microwave, ultrasound and conventional heating: Kinetics, characterization and process economics[J]. Food Hydrocolloids,2020,102(c):105592.
    [36]
    AKBARI S, ABDURAHMAN N H, YUNUS R M. Optimization of saponins, phenolics, and antioxidants extracted from fenugreek seeds using microwave-assisted extraction and response surface methodology as an optimizing tool[J]. Comptes Rendus Chimie,2019,22(11-12):714−727. doi: 10.1016/j.crci.2019.07.007
    [37]
    韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2017

    WEI S Y. Effect of different biomass raw materials and preparation temperatures on the physicochemical characteristics of biochar[D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, CAS), 2017.
    [38]
    LI Q, TU Y, ZHU C, et al. Cholinesterase, β-amyloid aggregation inhibitory and antioxidant capacities of Chinese medicinal plants[J]. Industrial Crops and Products,2017,108:512−519. doi: 10.1016/j.indcrop.2017.07.001
    [39]
    XU S, YANG L, TIAN R, et al. Species differentiation and quality assessment of Radix Paeoniae Rubra (Chi-shao) by means of high-performance liquid chromatographic fingerprint[J]. Journal of Chromatography A,2009,1216(11):2163−2168. doi: 10.1016/j.chroma.2008.04.064
  • Cited by

    Periodical cited type(7)

    1. 郭慧慧,蒋元斌,林丛发,徐绍翔,林泽宇,薛立云. 太子参脱毒苗培养、化学成分及指纹图谱研究进展. 药学研究. 2024(03): 274-281 .
    2. 张森,欧婧,豆晓霞,刘晓东,付本懂. 太子参及提取物对动物免疫调节作用研究进展. 动物医学进展. 2024(05): 97-102 .
    3. 张春雨,邢鹏,周福荣,肖逸豪,赵红兵. 中药复方养肝活血汤对酒精性肝病的临床研究. 中国民族医药杂志. 2024(09): 11-14 .
    4. 倪建成,范永飞,叶祖云. 太子参化学成分、药理作用和应用的研究进展. 中草药. 2023(06): 1963-1977 .
    5. 游绍伟,詹亚梅,王文素,何典城,蓬兴柱,王学勇. 基于“脾虚宛滞”探讨慢性萎缩性胃炎“炎癌转化”与防治思路. 中国实验方剂学杂志. 2023(21): 188-195 .
    6. 文丁苑,梁双敏,国琦,宋晓晓,葛长荣,肖智超. 榆黄菇多糖提取工艺优化及其免疫调节活性评价. 现代食品科技. 2023(10): 233-243 .
    7. 谢雄雄,孟璞岩,朱灵芝,陈宜均,龚斌,李康琴,邓绍勇. 太子参的药理活性、化学成分及繁殖栽培研究进展. 南方林业科学. 2023(05): 60-64+78 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return