RUAN Shenghui, JIANG Caixia, LIU Xiaolan, et al. Research Status of Isomaltooligosaccharides by Enzymatic Preparation[J]. Science and Technology of Food Industry, 2023, 44(17): 463−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110113.
Citation: RUAN Shenghui, JIANG Caixia, LIU Xiaolan, et al. Research Status of Isomaltooligosaccharides by Enzymatic Preparation[J]. Science and Technology of Food Industry, 2023, 44(17): 463−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110113.

Research Status of Isomaltooligosaccharides by Enzymatic Preparation

More Information
  • Received Date: November 13, 2022
  • Accepted Date: November 13, 2022
  • Available Online: July 05, 2023
  • Isomaltooligosaccharides (IMOs) are recognized as functional food ingredients with prebiotic potential that deliver health benefits. IMOs have attained commercial interest as they are produced from low-cost agricultural products that are widely available and have prospective applications in the food industry. This paper focuses on the enzymatic production processes of IMOs, as well as its key technology research, including enzyme conversion, enzyme membrane bioreactors, enzyme immobilization and biocatalysis are analyzed. Moreover, the shortcomings of the existing technology are analyzed. Combined with modern biotechnology, the research direction of related enzyme technology in the field of industrial production of IMOs is prospected, which provide some reference for its industrialization development.
  • [1]
    BURGAIN J, GAIANI C, LINDER M, et al. Encapsulation of probiotic living cells: From laboratory scale to industrial applications[J]. Journal of Food Engineering,2011,104(4):467−483. doi: 10.1016/j.jfoodeng.2010.12.031
    [2]
    GIBSON G R, ROBERFROID M B. Dietary modulation of the human colonie microbiota: introducing the concept of prebiotics[J]. Journal of Nutrition,1995,125(6):1401−1412. doi: 10.1093/jn/125.6.1401
    [3]
    GIBSON G R, PROBERT H M, VAN LOO J, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutrition Research Reviews,2004,17(2):259−275. doi: 10.1079/NRR200479
    [4]
    GOFFIN D, DELZENNE N, BLECKER C, et al. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics[J]. Critical Reviews in Food Science and Nutrition,2011,51(5):394−409. doi: 10.1080/10408391003628955
    [5]
    GOURINENI V, STEWART M L, ICOZ D, et al. Gastrointestinal tolerance and glycemic response of isomaltooligosaccharides in healthy adults[J]. Nutrients,2018,10(3):301. doi: 10.3390/nu10030301
    [6]
    ZHANG L, SU Y, ZHENG Y, et al. Sandwich-structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides[J]. Bioresource Technology,2010,101(23):9144−9149. doi: 10.1016/j.biortech.2010.07.001
    [7]
    WANG S, XIAO Y, TIAN F, et al. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms[J]. Journal of Functional Foods,2020,66:103838. doi: 10.1016/j.jff.2020.103838
    [8]
    LI J, TAN B, MAI K. Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei)[J]. Aquaculture,2009,291(1−2):35−40. doi: 10.1016/j.aquaculture.2009.03.005
    [9]
    INAMUDDIN, ABDULLAH ASIRI. Sustainable green chemical processes and their allied applications[M]. Berlin: Springer, 2020: 97−150.
    [10]
    OKU T, NAKAMURA S. Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl-sucrose, and isomalto-oligosaccharide in healthy human subjects[J]. European Journal of Clinical Nutrition,2003,57(9):1150−1156. doi: 10.1038/sj.ejcn.1601666
    [11]
    GRUBIC T J, KREIDER R B, SOWINSKI R, et al. Glycemic and insulinemic response to ingestion of a novel food bar containing whey protein and isomalto-oligosaccharides[J]. The Faseb Journal,2018,32:lb371−lb371.
    [12]
    费璠, 刘昌伟, 牛丽, 等. 酶及酶技术在茶叶深加工中的应用[J]. 食品与机械,2022,38(6):199−204. [FEI F, LIU C V, NIU L, et al. Application of enzyme and enzyme technology in deep processing of tea[J]. Food and Machinery,2022,38(6):199−204. doi: 10.13652/j.spjx.1003.5788.2022.90117

    FEI F, LIU C V, NIU L, et al. Application of enzyme and enzyme technology in deep processing of tea[J]. Food and Machinery, 2022, 38(6): 199-204. doi: 10.13652/j.spjx.1003.5788.2022.90117
    [13]
    SORNDECH W, NAKORN K N, TONGTA S, et al. Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications[J]. LWT-Food Science and Technology,2018,95:135−142. doi: 10.1016/j.lwt.2018.04.098
    [14]
    肖鹭, 周锦涛, 刘振, 等. 固定化纳米酶的研究进展[J/OL]. 食品科学. https://kns.cnki.net/kcms/detail/11.2206.TS.20220915.1719.002.html.

    XIAO L, ZHOU J T, LIU Z, et al. Research progress of immobilized nano-enzymes [J/OL]. Food Science. https://kns.cnki.net/kcms/detail/11.2206.TS.20220915.1719.002.html.
    [15]
    SORNDECH W, SAGNELLI D, BLENNOW A, et al. Combination of amylase and transferase catalysis to improve IMO compositions and productivity[J]. LWT-Food Science and Technology,2017,79:479−486. doi: 10.1016/j.lwt.2017.01.071
    [16]
    FUJIMOTO Z, KISHINE N, SUZUKI N, et al. Isomaltooligosaccharide-binding structure of Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase[J]. Bioscience Reports,2017,37(2):BSR20170253. doi: 10.1042/BSR20170253
    [17]
    RUDEEKULTHAMRONG P, SAWASDEE K, KAULPIBOON J. Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes[J]. Biotechnology and Bioprocess Engineering,2013,18(4):778−786. doi: 10.1007/s12257-012-0777-8
    [18]
    YEN C H, TSENG Y H, KUO Y W, et al. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people-A placebo-controlled, diet-controlled trial[J]. Nutrition,2011,27(4):445−450. doi: 10.1016/j.nut.2010.05.012
    [19]
    SHI Q, JUVONEN M, HOU Y, et al. Lactose-and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase[J]. Food Chemistry,2016,190:226−236. doi: 10.1016/j.foodchem.2015.05.090
    [20]
    HU Y, WINTER V, CHEN X Y, et al. Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase DsrM from Weissella cibaria[J]. Food Research International,2017,99:603−611. doi: 10.1016/j.foodres.2017.06.026
    [21]
    KLAHAN P, OKUYAMA M, JINNAI K, et al. Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides[J]. Bioscience, Biotechnology, and Biochemistry,2018,82(9):1480−1487. doi: 10.1080/09168451.2018.1473026
    [22]
    PALANIAPPAN A, EMMAMBUX M N. The challenges in production technology, health-associated functions, physico-chemical properties and food applications of isomaltooligosaccharides[J]. Critical Reviews in Food Science and Nutrition, 2021: 1−17.
    [23]
    CIRIC J, WOORTMAN A J J, LOOS K. Analysis of isoamylase debranched starches with size exclusion chromatography utilizing PFG columns[J]. Carbohydrate Polymers,2014,112:458−461. doi: 10.1016/j.carbpol.2014.05.093
    [24]
    NIU D, QIAO J, LI P, et al. Highly efficient enzymatic preparation of isomalto-oligosaccharides from starch using an enzyme cocktail[J]. Electronic Journal of Biotechnology,2017,26:46−51. doi: 10.1016/j.ejbt.2016.12.002
    [25]
    PAN Y C, LEE W C. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells[J]. Biotechnology and Bioengineering,2005,89(7):797−804. doi: 10.1002/bit.20402
    [26]
    LEE H S, AUH J H, YOON H G, et al. Cooperative action of α-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production[J]. Journal of Agricultural and Food Chemistry,2002,50(10):2812−2817. doi: 10.1021/jf011529y
    [27]
    BASU A, MUTTURI S, PRAPULLA S G. Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainable sources[J]. Process Biochemistry,2016,51(10):1464−1471. doi: 10.1016/j.procbio.2016.06.008
    [28]
    KIM Y M, SEO M Y, KANG H K, et al. Construction of a fusion enzyme of dextransucrase and dextranase: Application for one-step synthesis of isomalto-oligosaccharides[J]. Enzyme and Microbial technology,2009,44(3):159−164. doi: 10.1016/j.enzmictec.2008.10.007
    [29]
    GOULAS A K, FISHER D A, GRIMBLE G K, et al. Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase[J]. Enzyme and Microbial Technology,2004,35(4):327−338. doi: 10.1016/j.enzmictec.2004.05.008
    [30]
    KAULPIBOON J, RUDEEKULTHAMRONG P, WATANASATITARPA S, et al. Synthesis of long-chain isomaltooligosaccharides from tapioca starch and an in vitro investigation of their prebiotic properties[J]. Journal of Molecular Catalysis B:Enzymatic,2015,120:127−135. doi: 10.1016/j.molcatb.2015.07.004
    [31]
    DEMUTH K, JORDENING H J, BUCHHOLZ K. Oligosaccharide synthesis by dextransucrase: new unconventional acceptors[J]. Carbohydrate Research,2002,337(20):1811−1820. doi: 10.1016/S0008-6215(02)00272-0
    [32]
    DOLS-LAFARGUE M, WILLEMOT R M, MONSAN P F, et al. Reactor optimization for α-1, 2 glucooligosaccharide synthesis by immobilized dextransucrase[J]. Biotechnology and Bioengineering,2001,75(3):276−284. doi: 10.1002/bit.1183
    [33]
    BERTRAND E, PIERRE G, DELATTRE C, et al. Dextranase immobilization on epoxy CIM® disk for the production of isomaltooligosaccharides from dextran[J]. Carbohydrate Polymers,2014,111:707−713. doi: 10.1016/j.carbpol.2014.04.100
    [34]
    OJHA S, MISHRA S, CHAND S. Production of isomalto-oligosaccharides by cell bound α-glucosidase of Microbacterium sp[J]. LWT-Food Science and Technology,2015,60(1):486−494. doi: 10.1016/j.lwt.2014.08.009
    [35]
    DUAN G, LI F, SHETTY J K, et al. Grain compositions containing prebiotic isomaltooligosaccharides and methods of making and using same[J]. Carbohydrate Polymers,2011,112:605−611.
    [36]
    KUMAR C G, SRIPADA S, POORNACHANDRA Y. Status and future prospects of fructooligosaccharides as nutraceuticals[J]. Role of Materials Science in Food Bioengineering, 2018: 451−503.
    [37]
    薛琳. 固定化聚半乳糖醛酸酶制备芒果皮果胶低聚糖及其抑菌活性研究[D]. 无锡: 江南大学, 2021

    XUE L. Pectic oligosaccharides from mango peel hydrolyzed by immobilized polygalactaronase and assessment of their antibacterial activities[D]. Wuxi: Jiangnan University, 2021.
    [38]
    SU Z, LUO J, SIGURDARDOTTIR S B, et al. An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity[J]. Carbohydrate Polymers,2021,271:118430. doi: 10.1016/j.carbpol.2021.118430
    [39]
    苏子然. 酶膜反应器生产均一分子量的寡聚右旋糖酐[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018

    SU Z R. Production of oligodextran by using an enzymatic membrane reactor[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering, Chinese Academy of Sciences), 2018.
    [40]
    洪兰, 蒋尚昆, 刘美玲, 等. 酶膜反应器与手性分离膜在功能性糖生产中的应用展望[J]. 膜科学与技术,2022,42(2):146−153. [HONG L, JIANG S K, LIU M L, et al. Application prospect of enzymatic membrane reactors and chiralseparation membranes in functional sugars production[J]. Membrane Science and Technology,2022,42(2):146−153.

    HONG L, JIANG S K, LIU M L, et al. Application prospect of enzymatic membrane reactors and chiralseparation membranes in functional sugars production[J]. Membrane Science and Technology, 2022, 42(02): 146-153.
    [41]
    张佳旭, 储子仪, 吴振华等. 固定化酶/细胞用于功能糖生物制造的研究进展[J]. 食品研究与开发,2022,43(16):180−189. [ZHANG J X, CHU Z Y, WU Z, et al. Immobilized enzyme/cell for biomanufacturing of functional sugar: A review[J]. Food Research and Development,2022,43(16):180−189.

    ZHANG J X, CHU Z Y, WU Z, et al. Immobilized enzyme/cell for biomanufacturing of functional sugar: A review [J]. Food Research and Development, 2022, 43(16): 180-189.
    [42]
    ZHOU Q, WANG Y, XIAO J, et al. Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials,2019,371:323−331. doi: 10.1016/j.jhazmat.2019.03.027
    [43]
    SIRISHA V L, JAIN A, JAIN A. Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes[J]. Advances in Food and Nutrition Research,2016,79:179−211.
    [44]
    ZHANG L, JIANG Y, JIANG Z, et al. Immobilized transglucosidase in biomimetic polymer-inorganic hybrid capsules for efficient conversion of maltose to isomaltooligosaccharides[J]. Biochemical Engineering Journal,2009,46(2):186−192. doi: 10.1016/j.bej.2009.05.008
    [45]
    KAHAR U M, CHAN K G, SANI M H, et al. Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4[J]. International Journal of Biological Macromolecules,2017,104:322−332. doi: 10.1016/j.ijbiomac.2017.06.054
    [46]
    WALSH C T, MOORE B S. Enzymatic cascade reactions in biosynthesis[J]. Angewandte Chemie International Edition,2019,58(21):6846−6879. doi: 10.1002/anie.201807844
    [47]
    张璟譞, 高兵兵, 何冰芳. 生物催化中的酶固定化研究进展[J]. 生物加工过程,2022,20(1):9−19. [ZHANG J X, GAO P P, HE B F. Research progress of enzyme immobilized in biocatalysis[J]. Chinese Journal of Bioprocess Engineering,2022,20(1):9−19.

    ZHANG J X, GAO P P, HE B F. Research progress of enzyme immobilized in biocatalysis[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(1): 9-19.
    [48]
    CHEN R. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: An update[J]. Applied Microbiology & Biotechnology,2018,102(7):3017−3026.
    [49]
    眭梁梁. 米曲霉/黑曲霉全细胞催化剂在造纸白水处理中的应用研究[D]. 广州: 华南理工大学, 2016

    SUI L L. Treatment of whitewater in papermaking with whole-cells biocatalysts of Aspergillus orgzae and Aspergillus niger[D]. Guangzhou: South China University of Technology, 2016.
    [50]
    王艺颖, 董钰漫, 尹伟, 等. 全细胞生物催化过程强化的研究进展[J]. 化学通报,2020,83(10):875−882. [WANG Y Y, DOMG Y M, YI W, et al. Progress in the process intensification of whole-cell biocatalysis[J]. Chemistry Bulletin,2020,83(10):875−882.

    WANG Y Y, DOMG Y M, YI W, et al. Progress in the process intensification of whole-cell biocatalysis[J]. Chemistry Bulletin, 2020, 83(10): 875-882.
    [51]
    ZHAO N, XU Y, WANG K, et al. Synthesis of isomalto-oligosaccharides by Pichia pastoris displaying the Aspergillus niger α-glucosidase[J]. Journal of Agricultural and Food Chemistry,2017,65(43):9468−9474. doi: 10.1021/acs.jafc.7b04140
    [52]
    黄楠, 周波, 叶童, 等. 黑曲霉H9-30全细胞催化合成低聚异麦芽糖[J]. 食品与发酵工业,2019,45(10):36−41. [HUANG N, ZHOU B, YE T, et al. Synthesis of isomaltooligosaccharides by whole-cell Aspergillus niger H9-30[J]. Food and Fermentation Industries,2019,45(10):36−41.

    HUANG N, ZHOU B, YE T, et al. Synthesis of isomaltooligosaccharides by whole-cell Aspergillus niger H9-30[J]. Food and Fermentation Industries, 2019, 45(10): 36-41.
    [53]
    HUANG Z, LI Z, SU Y, et al. Continuous production of isomalto-oligosaccharides by thermo-inactivated cells of Aspergillus niger J2 with coarse perlite as an immobilizing material[J]. Applied Biochemistry and Biotechnology,2018,185(4):1088−1099. doi: 10.1007/s12010-018-2706-6
    [54]
    FUJIMOTO Z, SUZUKI N, KISHINE N, et al. Carbohydrate-binding architecture of the multi-modular α-1, 6-glucosyltransferase from Paenibacillus sp. 598K, which produces α-1, 6-glucosyl-α-glucosaccharides from starch[J]. Biochemical Journal,2017,474(16):2763−2778. doi: 10.1042/BCJ20170152
    [55]
    AUIEWIRIYANUKUL W, SABURI W, KATO K, et al. Function and structure of GH13_31 α-glucosidase with high α-(1→4)-glucosidic linkage specificity and transglucosylation activity[J]. Febs Letters,2018,592(13):2268−2281. doi: 10.1002/1873-3468.13126
    [56]
    李林波, 王宝石, 张明霞, 等. α-葡萄糖苷酶高效合成低聚异麦芽糖的策略分析[J]. 食品与发酵工业,2021,47(21):275−281. [LI L B, WANG B S, ZHANG M X, et al. Strategical analysis of high-efficient synthesis of isomalto-oligosaccharides by α-glucosidase[J]. Food and Fermentation Industries,2021,47(21):275−281.

    LI L B, WANG B S, ZHANG M X, et al. Strategical analysis of high-efficient synthesis of isomalto-oligosaccharides by α-glucosidase[J]. Food and Fermentation Industries, 2021, 47(21): 275-281.
    [57]
    荣佳慧, 张卿尧, 韦浩, 等. 膜生物反应器研究及应用现状[J]. 黑龙江科技信息,2015(7):16. [SONG J H, ZHANG Q Y, WEI H, et al. Research on actuality of membrane bioreactor[J]. Heilongjiang Science and Technology Information,2015(7):16.

    SONG J H, ZHANG Q Y, WEI H, et al. Research on actuality of membrane bioreactor[J]. Heilongjiang Science and Technology Information, 2015(7): 16.
    [58]
    GIORON L, DRIOLI E. Biocatalytic membrane reactors: Applications and perspectives[J]. Trends in Biotechnology,2000,18(8):339−349. doi: 10.1016/S0167-7799(00)01472-4
    [59]
    李永霞, 张小永, 黄洪媛, 等. 酶膜反应器及其应用[J]. 食品安全导刊,2014(26):76−78. [Li Y X, ZHANG X Y, HUANG H Y, et al. Enzyme membrane reactor and its application[J]. China Food Safety Magazine,2014(26):76−78.

    Li Y X, ZHANG X Y, HUANG H Y, et al. Enzyme membrane reactor and its application[J]. China Food Safety Magazine, 2014(26): 76-78.
    [60]
    李亚茹, 宋晓敏, 徐文彪, 等. 玉米秸秆全组分基复合膜材料的制备及性能研究[J]. 林产工业,2022,59(8):9−16. [LI Y R, SONG X M, XU W B, et al. Preparation and performance study of corn stalk full-component base composite film material[J]. China Forest Products Industry,2022,59(8):9−16.

    LI Y R, SONG X M, XU W B, et al. Preparation and performance study of corn stalk full-component base composite film material[J]. China Forest Products Industry, 2022, 59(08): 9-16.
    [61]
    AGBOOLA O, FAYOMI O S I, AYODEJI A, et al. A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation[J]. Membranes,2021,11(2):139. doi: 10.3390/membranes11020139
    [62]
    GAN G, FAN S, LI X, et al. Adsorption and membrane separation for removal and recovery of volatile organic compounds[J]. Journal of Environmental Sciences,2022,11(3):19−22.
    [63]
    黄文倩, 王迎夏, 田维圣, 等. 多酶催化级联反应在天然产物酶法合成中的应用研究进展[J]. 中国中药杂志,2023,48(2):336-348.

    HUANG W Q, WANG Y X, TIAN W S, et al. Research progress on the application of multi-enzyme-catalyzed cascade reactions in enzymatic synthesis of natural products[J]. China Journal of Chinese Materia Medica,2023,48(2):336-348.
  • Cited by

    Periodical cited type(3)

    1. 阮圣慧,郑喜群,刘晓兰,李良玉. 顺序式模拟移动床制备高纯度低聚异麦芽糖及其理化性质研究. 食品工业科技. 2025(04): 225-236 . 本站查看
    2. 阮圣慧,郑喜群,刘晓兰,李良玉,姜彩霞. 顺序式模拟移动床色谱高效纯化低聚异麦芽糖应用研究. 食品与机械. 2024(07): 163-168+230 .
    3. 殷述亭,李敏,迟晓丹. 低聚异麦芽糖在水产养殖中应用的研究进展. 饲料研究. 2024(21): 172-176 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (281) PDF downloads (43) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return