Citation: | RUAN Shenghui, JIANG Caixia, LIU Xiaolan, et al. Research Status of Isomaltooligosaccharides by Enzymatic Preparation[J]. Science and Technology of Food Industry, 2023, 44(17): 463−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110113. |
[1] |
BURGAIN J, GAIANI C, LINDER M, et al. Encapsulation of probiotic living cells: From laboratory scale to industrial applications[J]. Journal of Food Engineering,2011,104(4):467−483. doi: 10.1016/j.jfoodeng.2010.12.031
|
[2] |
GIBSON G R, ROBERFROID M B. Dietary modulation of the human colonie microbiota: introducing the concept of prebiotics[J]. Journal of Nutrition,1995,125(6):1401−1412. doi: 10.1093/jn/125.6.1401
|
[3] |
GIBSON G R, PROBERT H M, VAN LOO J, et al. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics[J]. Nutrition Research Reviews,2004,17(2):259−275. doi: 10.1079/NRR200479
|
[4] |
GOFFIN D, DELZENNE N, BLECKER C, et al. Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics[J]. Critical Reviews in Food Science and Nutrition,2011,51(5):394−409. doi: 10.1080/10408391003628955
|
[5] |
GOURINENI V, STEWART M L, ICOZ D, et al. Gastrointestinal tolerance and glycemic response of isomaltooligosaccharides in healthy adults[J]. Nutrients,2018,10(3):301. doi: 10.3390/nu10030301
|
[6] |
ZHANG L, SU Y, ZHENG Y, et al. Sandwich-structured enzyme membrane reactor for efficient conversion of maltose into isomaltooligosaccharides[J]. Bioresource Technology,2010,101(23):9144−9149. doi: 10.1016/j.biortech.2010.07.001
|
[7] |
WANG S, XIAO Y, TIAN F, et al. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms[J]. Journal of Functional Foods,2020,66:103838. doi: 10.1016/j.jff.2020.103838
|
[8] |
LI J, TAN B, MAI K. Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei)[J]. Aquaculture,2009,291(1−2):35−40. doi: 10.1016/j.aquaculture.2009.03.005
|
[9] |
INAMUDDIN, ABDULLAH ASIRI. Sustainable green chemical processes and their allied applications[M]. Berlin: Springer, 2020: 97−150.
|
[10] |
OKU T, NAKAMURA S. Comparison of digestibility and breath hydrogen gas excretion of fructo-oligosaccharide, galactosyl-sucrose, and isomalto-oligosaccharide in healthy human subjects[J]. European Journal of Clinical Nutrition,2003,57(9):1150−1156. doi: 10.1038/sj.ejcn.1601666
|
[11] |
GRUBIC T J, KREIDER R B, SOWINSKI R, et al. Glycemic and insulinemic response to ingestion of a novel food bar containing whey protein and isomalto-oligosaccharides[J]. The Faseb Journal,2018,32:lb371−lb371.
|
[12] |
费璠, 刘昌伟, 牛丽, 等. 酶及酶技术在茶叶深加工中的应用[J]. 食品与机械,2022,38(6):199−204. [FEI F, LIU C V, NIU L, et al. Application of enzyme and enzyme technology in deep processing of tea[J]. Food and Machinery,2022,38(6):199−204. doi: 10.13652/j.spjx.1003.5788.2022.90117
FEI F, LIU C V, NIU L, et al. Application of enzyme and enzyme technology in deep processing of tea[J]. Food and Machinery, 2022, 38(6): 199-204. doi: 10.13652/j.spjx.1003.5788.2022.90117
|
[13] |
SORNDECH W, NAKORN K N, TONGTA S, et al. Isomalto-oligosaccharides: Recent insights in production technology and their use for food and medical applications[J]. LWT-Food Science and Technology,2018,95:135−142. doi: 10.1016/j.lwt.2018.04.098
|
[14] |
肖鹭, 周锦涛, 刘振, 等. 固定化纳米酶的研究进展[J/OL]. 食品科学. https://kns.cnki.net/kcms/detail/11.2206.TS.20220915.1719.002.html.
XIAO L, ZHOU J T, LIU Z, et al. Research progress of immobilized nano-enzymes [J/OL]. Food Science. https://kns.cnki.net/kcms/detail/11.2206.TS.20220915.1719.002.html.
|
[15] |
SORNDECH W, SAGNELLI D, BLENNOW A, et al. Combination of amylase and transferase catalysis to improve IMO compositions and productivity[J]. LWT-Food Science and Technology,2017,79:479−486. doi: 10.1016/j.lwt.2017.01.071
|
[16] |
FUJIMOTO Z, KISHINE N, SUZUKI N, et al. Isomaltooligosaccharide-binding structure of Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase[J]. Bioscience Reports,2017,37(2):BSR20170253. doi: 10.1042/BSR20170253
|
[17] |
RUDEEKULTHAMRONG P, SAWASDEE K, KAULPIBOON J. Production of long-chain isomaltooligosaccharides from maltotriose using the thermostable amylomaltase and transglucosidase enzymes[J]. Biotechnology and Bioprocess Engineering,2013,18(4):778−786. doi: 10.1007/s12257-012-0777-8
|
[18] |
YEN C H, TSENG Y H, KUO Y W, et al. Long-term supplementation of isomalto-oligosaccharides improved colonic microflora profile, bowel function, and blood cholesterol levels in constipated elderly people-A placebo-controlled, diet-controlled trial[J]. Nutrition,2011,27(4):445−450. doi: 10.1016/j.nut.2010.05.012
|
[19] |
SHI Q, JUVONEN M, HOU Y, et al. Lactose-and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase[J]. Food Chemistry,2016,190:226−236. doi: 10.1016/j.foodchem.2015.05.090
|
[20] |
HU Y, WINTER V, CHEN X Y, et al. Effect of acceptor carbohydrates on oligosaccharide and polysaccharide synthesis by dextransucrase DsrM from Weissella cibaria[J]. Food Research International,2017,99:603−611. doi: 10.1016/j.foodres.2017.06.026
|
[21] |
KLAHAN P, OKUYAMA M, JINNAI K, et al. Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides[J]. Bioscience, Biotechnology, and Biochemistry,2018,82(9):1480−1487. doi: 10.1080/09168451.2018.1473026
|
[22] |
PALANIAPPAN A, EMMAMBUX M N. The challenges in production technology, health-associated functions, physico-chemical properties and food applications of isomaltooligosaccharides[J]. Critical Reviews in Food Science and Nutrition, 2021: 1−17.
|
[23] |
CIRIC J, WOORTMAN A J J, LOOS K. Analysis of isoamylase debranched starches with size exclusion chromatography utilizing PFG columns[J]. Carbohydrate Polymers,2014,112:458−461. doi: 10.1016/j.carbpol.2014.05.093
|
[24] |
NIU D, QIAO J, LI P, et al. Highly efficient enzymatic preparation of isomalto-oligosaccharides from starch using an enzyme cocktail[J]. Electronic Journal of Biotechnology,2017,26:46−51. doi: 10.1016/j.ejbt.2016.12.002
|
[25] |
PAN Y C, LEE W C. Production of high-purity isomalto-oligosaccharides syrup by the enzymatic conversion of transglucosidase and fermentation of yeast cells[J]. Biotechnology and Bioengineering,2005,89(7):797−804. doi: 10.1002/bit.20402
|
[26] |
LEE H S, AUH J H, YOON H G, et al. Cooperative action of α-glucanotransferase and maltogenic amylase for an improved process of isomaltooligosaccharide (IMO) production[J]. Journal of Agricultural and Food Chemistry,2002,50(10):2812−2817. doi: 10.1021/jf011529y
|
[27] |
BASU A, MUTTURI S, PRAPULLA S G. Production of isomaltooligosaccharides (IMO) using simultaneous saccharification and transglucosylation from starch and sustainable sources[J]. Process Biochemistry,2016,51(10):1464−1471. doi: 10.1016/j.procbio.2016.06.008
|
[28] |
KIM Y M, SEO M Y, KANG H K, et al. Construction of a fusion enzyme of dextransucrase and dextranase: Application for one-step synthesis of isomalto-oligosaccharides[J]. Enzyme and Microbial technology,2009,44(3):159−164. doi: 10.1016/j.enzmictec.2008.10.007
|
[29] |
GOULAS A K, FISHER D A, GRIMBLE G K, et al. Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase[J]. Enzyme and Microbial Technology,2004,35(4):327−338. doi: 10.1016/j.enzmictec.2004.05.008
|
[30] |
KAULPIBOON J, RUDEEKULTHAMRONG P, WATANASATITARPA S, et al. Synthesis of long-chain isomaltooligosaccharides from tapioca starch and an in vitro investigation of their prebiotic properties[J]. Journal of Molecular Catalysis B:Enzymatic,2015,120:127−135. doi: 10.1016/j.molcatb.2015.07.004
|
[31] |
DEMUTH K, JORDENING H J, BUCHHOLZ K. Oligosaccharide synthesis by dextransucrase: new unconventional acceptors[J]. Carbohydrate Research,2002,337(20):1811−1820. doi: 10.1016/S0008-6215(02)00272-0
|
[32] |
DOLS-LAFARGUE M, WILLEMOT R M, MONSAN P F, et al. Reactor optimization for α-1, 2 glucooligosaccharide synthesis by immobilized dextransucrase[J]. Biotechnology and Bioengineering,2001,75(3):276−284. doi: 10.1002/bit.1183
|
[33] |
BERTRAND E, PIERRE G, DELATTRE C, et al. Dextranase immobilization on epoxy CIM® disk for the production of isomaltooligosaccharides from dextran[J]. Carbohydrate Polymers,2014,111:707−713. doi: 10.1016/j.carbpol.2014.04.100
|
[34] |
OJHA S, MISHRA S, CHAND S. Production of isomalto-oligosaccharides by cell bound α-glucosidase of Microbacterium sp[J]. LWT-Food Science and Technology,2015,60(1):486−494. doi: 10.1016/j.lwt.2014.08.009
|
[35] |
DUAN G, LI F, SHETTY J K, et al. Grain compositions containing prebiotic isomaltooligosaccharides and methods of making and using same[J]. Carbohydrate Polymers,2011,112:605−611.
|
[36] |
KUMAR C G, SRIPADA S, POORNACHANDRA Y. Status and future prospects of fructooligosaccharides as nutraceuticals[J]. Role of Materials Science in Food Bioengineering, 2018: 451−503.
|
[37] |
薛琳. 固定化聚半乳糖醛酸酶制备芒果皮果胶低聚糖及其抑菌活性研究[D]. 无锡: 江南大学, 2021
XUE L. Pectic oligosaccharides from mango peel hydrolyzed by immobilized polygalactaronase and assessment of their antibacterial activities[D]. Wuxi: Jiangnan University, 2021.
|
[38] |
SU Z, LUO J, SIGURDARDOTTIR S B, et al. An enzymatic membrane reactor for oligodextran production: Effects of enzyme immobilization strategies on dextranase activity[J]. Carbohydrate Polymers,2021,271:118430. doi: 10.1016/j.carbpol.2021.118430
|
[39] |
苏子然. 酶膜反应器生产均一分子量的寡聚右旋糖酐[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018
SU Z R. Production of oligodextran by using an enzymatic membrane reactor[D]. Beijing: University of Chinese Academy of Sciences(Institute of Process Engineering, Chinese Academy of Sciences), 2018.
|
[40] |
洪兰, 蒋尚昆, 刘美玲, 等. 酶膜反应器与手性分离膜在功能性糖生产中的应用展望[J]. 膜科学与技术,2022,42(2):146−153. [HONG L, JIANG S K, LIU M L, et al. Application prospect of enzymatic membrane reactors and chiralseparation membranes in functional sugars production[J]. Membrane Science and Technology,2022,42(2):146−153.
HONG L, JIANG S K, LIU M L, et al. Application prospect of enzymatic membrane reactors and chiralseparation membranes in functional sugars production[J]. Membrane Science and Technology, 2022, 42(02): 146-153.
|
[41] |
张佳旭, 储子仪, 吴振华等. 固定化酶/细胞用于功能糖生物制造的研究进展[J]. 食品研究与开发,2022,43(16):180−189. [ZHANG J X, CHU Z Y, WU Z, et al. Immobilized enzyme/cell for biomanufacturing of functional sugar: A review[J]. Food Research and Development,2022,43(16):180−189.
ZHANG J X, CHU Z Y, WU Z, et al. Immobilized enzyme/cell for biomanufacturing of functional sugar: A review [J]. Food Research and Development, 2022, 43(16): 180-189.
|
[42] |
ZHOU Q, WANG Y, XIAO J, et al. Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials,2019,371:323−331. doi: 10.1016/j.jhazmat.2019.03.027
|
[43] |
SIRISHA V L, JAIN A, JAIN A. Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes[J]. Advances in Food and Nutrition Research,2016,79:179−211.
|
[44] |
ZHANG L, JIANG Y, JIANG Z, et al. Immobilized transglucosidase in biomimetic polymer-inorganic hybrid capsules for efficient conversion of maltose to isomaltooligosaccharides[J]. Biochemical Engineering Journal,2009,46(2):186−192. doi: 10.1016/j.bej.2009.05.008
|
[45] |
KAHAR U M, CHAN K G, SANI M H, et al. Effects of single and co-immobilization on the product specificity of type I pullulanase from Anoxybacillus sp. SK3-4[J]. International Journal of Biological Macromolecules,2017,104:322−332. doi: 10.1016/j.ijbiomac.2017.06.054
|
[46] |
WALSH C T, MOORE B S. Enzymatic cascade reactions in biosynthesis[J]. Angewandte Chemie International Edition,2019,58(21):6846−6879. doi: 10.1002/anie.201807844
|
[47] |
张璟譞, 高兵兵, 何冰芳. 生物催化中的酶固定化研究进展[J]. 生物加工过程,2022,20(1):9−19. [ZHANG J X, GAO P P, HE B F. Research progress of enzyme immobilized in biocatalysis[J]. Chinese Journal of Bioprocess Engineering,2022,20(1):9−19.
ZHANG J X, GAO P P, HE B F. Research progress of enzyme immobilized in biocatalysis[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(1): 9-19.
|
[48] |
CHEN R. Enzyme and microbial technology for synthesis of bioactive oligosaccharides: An update[J]. Applied Microbiology & Biotechnology,2018,102(7):3017−3026.
|
[49] |
眭梁梁. 米曲霉/黑曲霉全细胞催化剂在造纸白水处理中的应用研究[D]. 广州: 华南理工大学, 2016
SUI L L. Treatment of whitewater in papermaking with whole-cells biocatalysts of Aspergillus orgzae and Aspergillus niger[D]. Guangzhou: South China University of Technology, 2016.
|
[50] |
王艺颖, 董钰漫, 尹伟, 等. 全细胞生物催化过程强化的研究进展[J]. 化学通报,2020,83(10):875−882. [WANG Y Y, DOMG Y M, YI W, et al. Progress in the process intensification of whole-cell biocatalysis[J]. Chemistry Bulletin,2020,83(10):875−882.
WANG Y Y, DOMG Y M, YI W, et al. Progress in the process intensification of whole-cell biocatalysis[J]. Chemistry Bulletin, 2020, 83(10): 875-882.
|
[51] |
ZHAO N, XU Y, WANG K, et al. Synthesis of isomalto-oligosaccharides by Pichia pastoris displaying the Aspergillus niger α-glucosidase[J]. Journal of Agricultural and Food Chemistry,2017,65(43):9468−9474. doi: 10.1021/acs.jafc.7b04140
|
[52] |
黄楠, 周波, 叶童, 等. 黑曲霉H9-30全细胞催化合成低聚异麦芽糖[J]. 食品与发酵工业,2019,45(10):36−41. [HUANG N, ZHOU B, YE T, et al. Synthesis of isomaltooligosaccharides by whole-cell Aspergillus niger H9-30[J]. Food and Fermentation Industries,2019,45(10):36−41.
HUANG N, ZHOU B, YE T, et al. Synthesis of isomaltooligosaccharides by whole-cell Aspergillus niger H9-30[J]. Food and Fermentation Industries, 2019, 45(10): 36-41.
|
[53] |
HUANG Z, LI Z, SU Y, et al. Continuous production of isomalto-oligosaccharides by thermo-inactivated cells of Aspergillus niger J2 with coarse perlite as an immobilizing material[J]. Applied Biochemistry and Biotechnology,2018,185(4):1088−1099. doi: 10.1007/s12010-018-2706-6
|
[54] |
FUJIMOTO Z, SUZUKI N, KISHINE N, et al. Carbohydrate-binding architecture of the multi-modular α-1, 6-glucosyltransferase from Paenibacillus sp. 598K, which produces α-1, 6-glucosyl-α-glucosaccharides from starch[J]. Biochemical Journal,2017,474(16):2763−2778. doi: 10.1042/BCJ20170152
|
[55] |
AUIEWIRIYANUKUL W, SABURI W, KATO K, et al. Function and structure of GH13_31 α-glucosidase with high α-(1→4)-glucosidic linkage specificity and transglucosylation activity[J]. Febs Letters,2018,592(13):2268−2281. doi: 10.1002/1873-3468.13126
|
[56] |
李林波, 王宝石, 张明霞, 等. α-葡萄糖苷酶高效合成低聚异麦芽糖的策略分析[J]. 食品与发酵工业,2021,47(21):275−281. [LI L B, WANG B S, ZHANG M X, et al. Strategical analysis of high-efficient synthesis of isomalto-oligosaccharides by α-glucosidase[J]. Food and Fermentation Industries,2021,47(21):275−281.
LI L B, WANG B S, ZHANG M X, et al. Strategical analysis of high-efficient synthesis of isomalto-oligosaccharides by α-glucosidase[J]. Food and Fermentation Industries, 2021, 47(21): 275-281.
|
[57] |
荣佳慧, 张卿尧, 韦浩, 等. 膜生物反应器研究及应用现状[J]. 黑龙江科技信息,2015(7):16. [SONG J H, ZHANG Q Y, WEI H, et al. Research on actuality of membrane bioreactor[J]. Heilongjiang Science and Technology Information,2015(7):16.
SONG J H, ZHANG Q Y, WEI H, et al. Research on actuality of membrane bioreactor[J]. Heilongjiang Science and Technology Information, 2015(7): 16.
|
[58] |
GIORON L, DRIOLI E. Biocatalytic membrane reactors: Applications and perspectives[J]. Trends in Biotechnology,2000,18(8):339−349. doi: 10.1016/S0167-7799(00)01472-4
|
[59] |
李永霞, 张小永, 黄洪媛, 等. 酶膜反应器及其应用[J]. 食品安全导刊,2014(26):76−78. [Li Y X, ZHANG X Y, HUANG H Y, et al. Enzyme membrane reactor and its application[J]. China Food Safety Magazine,2014(26):76−78.
Li Y X, ZHANG X Y, HUANG H Y, et al. Enzyme membrane reactor and its application[J]. China Food Safety Magazine, 2014(26): 76-78.
|
[60] |
李亚茹, 宋晓敏, 徐文彪, 等. 玉米秸秆全组分基复合膜材料的制备及性能研究[J]. 林产工业,2022,59(8):9−16. [LI Y R, SONG X M, XU W B, et al. Preparation and performance study of corn stalk full-component base composite film material[J]. China Forest Products Industry,2022,59(8):9−16.
LI Y R, SONG X M, XU W B, et al. Preparation and performance study of corn stalk full-component base composite film material[J]. China Forest Products Industry, 2022, 59(08): 9-16.
|
[61] |
AGBOOLA O, FAYOMI O S I, AYODEJI A, et al. A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation[J]. Membranes,2021,11(2):139. doi: 10.3390/membranes11020139
|
[62] |
GAN G, FAN S, LI X, et al. Adsorption and membrane separation for removal and recovery of volatile organic compounds[J]. Journal of Environmental Sciences,2022,11(3):19−22.
|
[63] |
黄文倩, 王迎夏, 田维圣, 等. 多酶催化级联反应在天然产物酶法合成中的应用研究进展[J]. 中国中药杂志,2023,48(2):336-348.
HUANG W Q, WANG Y X, TIAN W S, et al. Research progress on the application of multi-enzyme-catalyzed cascade reactions in enzymatic synthesis of natural products[J]. China Journal of Chinese Materia Medica,2023,48(2):336-348.
|
1. |
阮圣慧,郑喜群,刘晓兰,李良玉. 顺序式模拟移动床制备高纯度低聚异麦芽糖及其理化性质研究. 食品工业科技. 2025(04): 225-236 .
![]() | |
2. |
阮圣慧,郑喜群,刘晓兰,李良玉,姜彩霞. 顺序式模拟移动床色谱高效纯化低聚异麦芽糖应用研究. 食品与机械. 2024(07): 163-168+230 .
![]() | |
3. |
殷述亭,李敏,迟晓丹. 低聚异麦芽糖在水产养殖中应用的研究进展. 饲料研究. 2024(21): 172-176 .
![]() |