ZHAN Jiajia, ZHOU Quan, XIONG Xingyao, et al. Screening of Fusarium oxysporum for Ethanol Production by Simultaneous Saccharification and Fermentation of Bagasse and Its Ethanol Production Performance[J]. Science and Technology of Food Industry, 2023, 44(19): 108−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110054.
Citation: ZHAN Jiajia, ZHOU Quan, XIONG Xingyao, et al. Screening of Fusarium oxysporum for Ethanol Production by Simultaneous Saccharification and Fermentation of Bagasse and Its Ethanol Production Performance[J]. Science and Technology of Food Industry, 2023, 44(19): 108−116. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110054.

Screening of Fusarium oxysporum for Ethanol Production by Simultaneous Saccharification and Fermentation of Bagasse and Its Ethanol Production Performance

More Information
  • Received Date: November 06, 2022
  • Available Online: August 04, 2023
  • In order to obtain an excellent Fusarium oxysporum strain for simultaneous saccharification and fermentation (SSF), the cellulase activity of the 14 strains of Fusarium oxysporum was determined, and Congo red plate staining and paper disintegrating tests were carried out to screen the strains, the ethanol production experiment of SSF was carried out to investigate its cellulose degradation and sugar conversion performance. The results showed that strain mh2 had strong cellulose degradation ability, its cellulase activity was 14.28 U/mL, the diameter of transparent circle was 4.5 cm, which could completely degrade the filter paper into paste. The yield of ethanol could reach 98 g/kg and 41.7 g/kg, respectively, and the conversion of ethanol could reach up to 33.36%. In addition, the activities of filter paper enzyme, endo-glucanase, β-glucanase and exo-glucanase in mh2 cellulase system were 25.63, 15.69, 19.61 and 22.44 U/mL, respectively, the degradation rate of bagasse cellulose was 25.6%, and the ethanol conversion rate of glucose and xylose was 0.443 and 0.213 g/g, respectively, the biodegradability of mh2 was 1.58, 1.17 and 3.8 times higher than that of Cs20, respectively, indicating that mh2 had good biodegradability and sugar conversion during SSF. This study can provide data for the study of SSF to enrich the resources of SSF strains and single strain to produce ethanol from lignocellulose.
  • [1]
    刘晓雪, 刘宇轩, 白晨. 我国食糖产业发展特点、问题与2021年发展趋势[J]. 甘蔗糖业,2021,50(1):102−108. [LIU X X, LIU Y X, BAI C. Characteristics, problems of sugar industry in China and development trends in 2021[J]. Sugarcane and Canesugar,2021,50(1):102−108.

    LIU X X, LIU Y X, BAI C. Characteristics, problems of sugar industry in China and development trends in 2021[J]. Sugarcane and Canesugar, 2021, 50(1): 102-108.
    [2]
    ANUKAM A, MAMPHWELI S, REDDY P, et al. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review[J]. Renewable and Sustainable Energy Reviews,2016,66:775−801. doi: 10.1016/j.rser.2016.08.046
    [3]
    高月淑, 许敬亮, 张志强, 等. 甘蔗渣高温同步糖化发酵制取燃料乙醇研究[J]. 太阳能学报,2014,35(4):692−697. [GAO Y S, XU J L, ZHANG Z Q, et al. Bio-ethanol production by high tempe rature simultaneous[J]. Acta Energiae Solaris Sinica,2014,35(4):692−697.

    GAO Y S, XU J L, ZHANG Z Q, et al. Bio-ethanol production by high tempe rature simultaneous [J]. Acta Energiae Solaris Sinica, 2014, 35(4): 692-697.
    [4]
    PATEL P, GAJJAR H, JOSHI B, et al. Inoculation of salt-tolerant Acinetobacter sp (RSC9) improves the sugarcane (Saccharum sp. Hybrids) growth under salinity stress condition[J]. Sugar Tech: An International Journal of Sugar Crops and Related Industries,2022(2):24.
    [5]
    郭振强, 张勇, 曹运齐, 等. 燃料乙醇发酵技术研究进展[J]. 生物技术通报,2020,36(1):238−244. [GUO Z Q, ZHANG Y, CAO Y Q, et al. Research progress of fuel ethanol fermentation technology[J]. Biotechnology Bulletin,2020,36(1):238−244.

    GUO Z Q, ZHANG Y, CAO Y Q, et al. Research progress of fuel ethanol fermentation technology[J]. Biotechnology Bulletin, 2020, 36(1): 238-244.
    [6]
    邓立康, 袁润鹏, 于子涵, 等. 纤维素乙醇的生物炼制及研究进展[J]. 生物加工过程,2022,20(5):507−520. [DENG L K, YUAN R P, YU Z H, et al. Biorefinery for cellulosic ethanol production: A review[J]. Chinese Journal of Bioprocess Engineering,2022,20(5):507−520. doi: 10.3969/j.issn.1672-3678.2022.05.005

    DENG L K, YUAN R P, YU Z H, et al. Biorefinery for cellulosic ethanol production: A review[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(5): 507-520. doi: 10.3969/j.issn.1672-3678.2022.05.005
    [7]
    张野, 王吉平, 苏天明, 等. 筛选微生物降解木质纤维素的研究进展[J]. 中国生物工程杂志,2020,40(6):100−105. [ZHANG Y, WANG J P, SU T M, et al. Research progress on degradation of lignocellulosic biomass by screening microorganisms[J]. China Biotechnology,2020,40(6):100−105.

    ZHANG Y, WANG J P, SU T M, et al. Research progress on degradation of lignocellulosic biomass by screening microorganisms [J]. China Biotechnology, 2020, 40(6): 100-105.
    [8]
    曹拢财, 叶艳艳, 王佳琪, 等. 乙醇/水中麦秆盐酸预处理及同步糖化发酵研究[J]. 河南科技学院学报(自然科学版),2019,47(4):36−40. [CAO L C, YE Y Y, WANG J Q, et al. Study of hydrochloric acid pretreatment in ethanol/water and simultaneous saccharification and fermentation of wheat straw[J]. Journal of Henan Institute of Science and Technology (Natural Science Edition),2019,47(4):36−40.

    CAO L C, YE Y Y, WANG J Q, et al. Study of hydrochloric acid pretreatment in ethanol/water and simultaneous saccharification and fermentation of wheat straw [J]. Journal of Henan Institute of Science and Technology(Natural Science Edition), 2019, 47(4): 36-40.
    [9]
    CHEN X K, ZHENG X T, PEI Y B, et al. Ethanol production from the mixture of waste french fries and municipal wastewater via separate hydrolysis and fermentation[J]. Applied Biochemistry and Biotechnology,2022,194(12):6007−6020. doi: 10.1007/s12010-022-04084-3
    [10]
    RASHID S E R A, ISHAK M Z, RAHMAN K H A, et al. Ethanol production from alkaline-treated rice straw via separate hydrolysis and fermentation (SHF) using K. UniMAP 1-1[J]. IOP Conference Series:Earth and Environmental Science,2021,765(1):112−152.
    [11]
    高月淑, 许敬亮, 袁振宏, 等. 木质纤维原料同步糖化发酵制取生物乙醇研究进展[J]. 生物质化学工程,2016,50(3):65−70. [GAO Y S, XU J L, YUAN Z H, et al. Research progress in bioethanol production through simultaneous saccharification and fermentation with lignocellulose[J]. Biomass Chemical Engineering,2016,50(3):65−70.

    GAO Y S, XU J L, YUAN Z H, et al. Research progress in bioethanol production through simultaneous saccharification and fermentation with lignocellulose[J]. Biomass Chemical Engineering, 2016, 50(3): 65-70.
    [12]
    张伟, 李文, 赵继东, 等. 小麦秸秆同步糖化发酵制取燃料乙醇[J]. 食品与发酵工业,2012,38(12):50−54. [ZHANG W, LI W, ZHAO J D, et al. Optimization of processing conditions for bioethanol production from wheat straw through simultaneously saccharification and fermentation[J]. Food and Fermentation Industries,2012,38(12):50−54.

    ZHANG W, LI W, ZHAO J D, et al. Optimization of processing conditions for bioethanol production from wheat straw through simultaneously saccharification and fermentation [J]. Food and Fermentation Industries, 2012, 38(12): 50-54.
    [13]
    张宁, 蒋剑春, 程荷芳, 等. 木质纤维生物质同步糖化发酵(SSF)生产乙醇的研究进展[J]. 化工进展,2010,29(2):238−242. [ZHANG N, JIANG J C, CHENG H F, et al. Progress in ethanol production from lignocellulose by SSF[J]. Chemical Industry and Engineering Progress,2010,29(2):238−242.

    ZHANG N, JIANG J C, CHENG H F, et al. Progress in ethanol production from lignocellulose by SSF [J]. Chemical Industry and Engineering Progress, 2010, 29(2): 238-242.
    [14]
    曹秀华, 阮奇城, 林海红, 等. 纤维燃料乙醇生产中木糖发酵的研究进展[J]. 中国麻业科学,2010,32(3):166−169. [CAO X H, RUAN Q C, LIN H H, et al. Progress of xylosic fermentation of lignocellulosic materials for bioethanol production[J]. Plant Fiber Sciences in China,2010,32(3):166−169.

    CAO X H, RUAN Q C, LIN H H, et al. Progress of xylosic fermentation of lignocellulosic materials for bioethanol production [J]. Plant Fiber Sciences in China, 2010, 32(3): 166-169.
    [15]
    王玮. 尖孢镰刀菌高产纤维素酶菌株的筛选鉴定及发酵条件优化[D]. 呼和浩特: 内蒙古大学, 2011

    WANG W. Screening and identification of Fusarium oxysporum strains with high cellulase production and optimization of fermentation conditions[D]. Hohhot: Inner Mongolia University, 2011.
    [16]
    孙曼钰, 李栋梁, 舒月力, 等. 尖孢镰刀菌诱导产酶及同步糖化发酵产纤维素乙醇[J]. 江苏农业科学,2019,47(2):277−281. [SUN M Y, LI D L, SHU Y L, et al. Production of cellulase induced by Fusarium oxysporm and production of cellulosic ethanol by simulaneous saccharification fermentation[J]. Jiangsu Agricultural Science,2019,47(2):277−281.

    SUN M Y, LI D L, SHU Y L, et al. Production of cellulase induced by Fusarium oxysporm and production of cellulosic ethanol by simulaneous saccharification fermentation[J] Jiangsu Agricultural Science, 2019, 47 (2): 277-281
    [17]
    曾璐. 五碳糖发酵产乙醇菌株的筛选及其发酵机理的组学研究[D]. 长沙: 湖南农业大学, 2017

    ZENG L. Screening of ethanol-producing strains with pentose and genomic study of their fermentation mechanism[D]. Changsha: Hunan Agricultural University, 2017.
    [18]
    中华人民共和国国家发展和改革委员会. QB 2583-2003 纤维素酶制剂[S]. 北京: 中国标准出版社, 2003

    National Development and Reform Commission of the People's Republic of China. QB 2583-2003 Cellulase preparation[S]. Beijing: China Standards Press, 2003.
    [19]
    陈桢. 过碳酸钠-甘油混合预处理甘蔗渣和乙醇发酵的研究[D]. 广州: 暨南大学, 2020

    CHEN Z. Study on pretreatment of bagasse with sodium percarbonate glycerol mixture and ethanol fermentation[D]. Guangzhou: Jinan University, 2020.
    [20]
    SLUITER A, HAMES B, RUIZ R O, et al. Determination of structural carbohydrates and lignin in biomass[J]. Biomass Anal Technol Team Lab Anal Proced,2004,2011:1−14.
    [21]
    冯东, 王丙莲, 梁晓辉, 等. 生物传感器法快速测定酒中的乙醇含量[J]. 酿酒科技,2012(2):83−86. [FENG D, WANG B L, LIANG X H, et al. Rapid determination of ethanol content in liquor by biosensor[J]. Liquor-Making Science & Technology,2012(2):83−86. doi: 10.13746/j.njkj.2012.02.004

    FENG D, WANG B L, LIANG X H, et al. Rapid determination of ethanol content in liquor by biosensor[J]. Liquor-Making Science & Technology, 2012(2): 83-86. doi: 10.13746/j.njkj.2012.02.004
    [22]
    许玉林, 郑月霞, 叶冰莹, 等. 一株纤维素降解真菌的筛选及鉴定[J]. 微生物学通报,2013,40(2):220−227. [XU Y L, ZHENG Y X, YE B Y, et al. Isolation and identification of a cellulose degrading fungi[J]. Microbiology China,2013,40(2):220−227.

    XU Y L, ZHENG Y L, YE B Y, et al. Isolation and identification of a cellulose degrading fungi [J]. Microbiology China, 2013, 40(2): 220-227.
    [23]
    杨娜, 何鑫, 杜春梅. 一株纤维素降解菌的筛选与鉴定[J]. 中国农学通报,2021,37(17):26−31. [YANG N, HE X, DU C M. Screening and identification of a cellulose degrading strain[J]. Chinese Agricultural Science Bulletin,2021,37(17):26−31. doi: 10.11924/j.issn.1000-6850.casb2021-0131

    YANG N, HE X, DU C M. Screening and identification of a cellulose degrading strain[J]. Chinese Agricultural Science Bulletin, 2021, 37(17): 26-31. doi: 10.11924/j.issn.1000-6850.casb2021-0131
    [24]
    石琢. 尖孢镰刀菌发酵木糖产乙醇的研究[D]. 长沙: 湖南农业大学, 2015

    SHI Z. Study on xylose fermentation to ethanol by Fusarium oxysporum[D]. Changsha: Hunan Agricultural University, 2015.
    [25]
    曲音波. 木质纤维素降解酶系的基础和技术研究进展[J]. 山东大学学报(理学版),2011,46(10):160−170. [QU Y B. Progress in basic and technological research of enzyme system for lignocellulosics biodegradation[J]. Journal of Shandong University (Science Edition),2011,46(10):160−170.

    QU Y B. Progress in basic and technological research of enzyme system for lignocellulosics biodegradation[J]. Journal of Shandong University (Science Edition), 2011, 46(10): 160-170.
    [26]
    SÁNCHEZ C. Lignocellulosic residues: Biodegradation and bioconversion by fungi[J]. Biotechnology Advances,2008,27(2):185−194.
    [27]
    GOUVEIA A B V S, SOUZA C S, SANTOS F R D, et al. Xylanase and β-glucanase in diets for Japanese laying quails[J]. Revista Ciência Agronô mica,2020,51(3):186−197.
    [28]
    BUCHILINA A S, GUNKOVA P I, BARAKOVA N V, et al. The effect of xylanase on the buckwheat starch hydrolysis[J]. IOP Conference Series. Earth and Environmental Science,2021,852(1):120−130.
    [29]
    OOSHIMA H O C U, KURAKAKE M, KATO J, et al. Enzymatic activity of cellulase adsorbed on cellulose and its change during hydrolysis[J]. Applied Biochemistry and Biotechnology,1991,31(3):253−266. doi: 10.1007/BF02921752
    [30]
    ZHOU Q, XU J, KOU Y, et al. Differential involvement of beta-glucosidases from Hypocrea jecorina in rapid induction of cellulase genes by cellulose and cellobiose[J]. Eukaryotic Cell,2012(11):11.
    [31]
    王晨, 李家儒. 植物β-葡萄糖苷酶的研究进展[J]. 生物资源,2021,43(2):101−109. [WANG C, LI J R. Research progress of plant β-glucosidase[J]. Biotic Resources,2021,43(2):101−109.

    WANG C, LI J R. Research progress of plant β⁃glucosidase [J]. Biotic Resources, 2021, 43(2): 101-109.
    [32]
    李永恒, 卓义敏, 谢晓航, 等. 甘蔗渣制备纤维素乙醇的研究[J]. 轻工科技,2018,34(3):10−11. [LI Y H, ZHUO Y M, XIE X H, et al. Preparation of cellulosic ethanol from bagasse[J]. Light Industry Science and Technology,2018,34(3):10−11.

    LI Y H, ZHUO Y M, XIE X H, et al. Preparation of cellulosic ethanol from bagasse [J]. Light Industry Science and Technology, 2018, 34(3): 10-11.
    [33]
    THAYSI C C A, WALDO C B, FABRÍCIA V S B, et al. Enzymatic cellulose hydrolysis for glucose obtainment using ionic liquid as a solvent medium[J]. Revista Virtual de Química,2019,11(1):310−325.
    [34]
    LI Q, JIANG Y P, TONG X Y, et al. Co-production of xylooligosaccharides and xylose from poplar sawdust by recombinant endo-1, 4-β-xylanase and β-xylosidase mixture hydrolysis[J]. Frontiers in Bioengineering and Biotechnology,2021,8:637−639.
    [35]
    李燕军, 赵岩, 黄龙辉, 等. 微生物同步利用葡萄糖和木糖代谢工程概述[J]. 发酵科技通讯,2017,46(1):54−59. [LI Y J, ZHAO Y, HUANG L H, et al. Overview of metabolic engineer on simultaneous utilization of glucose and xylose by microbes[J]. Bulletin of Fermentation Science and Technology,2017,46(1):54−59.

    LI Y J, ZHAO Y, HUANG L H, et al. Overview of metabolic engineer on simultaneous utilization of glucose and xylose by microbes[J]. Bulletin of Fermentation Science and Technology, 2017, 46(1): 54-59.
    [36]
    TAHERZADEH M J, GUSTAFSSON L, NIKLASSON C, et al. Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid[J]. Journal of Bioscience & Bioengineering,2000,90(4):374−380.
  • Cited by

    Periodical cited type(5)

    1. 茆鑫,郑剑斌,李广耀,曲敏,郑心琪. 响应曲面法优化刺五加-五味子混菌发酵工艺的研究. 食品科技. 2023(09): 57-64 .
    2. 管立军,李家磊,王崑仑,高扬,严松,陈凯新,季妮娜,李波,王家有,卢淑雯. 乳酸菌发酵对刺五加叶活性成分、体外抗氧化作用与降血糖相关酶的影响. 食品工业科技. 2022(07): 155-162 . 本站查看
    3. 孙慧峰,朱钧溢,国立东,都晓伟. 乳酸菌生物转化药食同源植物活性成分研究进展. 食品工业科技. 2022(07): 474-481 . 本站查看
    4. 关倩倩,熊涛,谢明勇. 植物基食品乳酸菌发酵技术研究进展. 食品与生物技术学报. 2022(07): 1-11 .
    5. 王丽群. 酿酒酵母与白面粉乳杆菌混合发酵对馒头品质的影响. 黑龙江农业科学. 2021(07): 77-81 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (120) PDF downloads (9) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return