GAO Jiahui, YANG Xinyue, HAN Yumeng, et al. Effect of Extraction pH on the Structure of Glycyrrhiza Polysaccharide with Acid-extraction[J]. Science and Technology of Food Industry, 2023, 44(19): 24−31. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110051.
Citation: GAO Jiahui, YANG Xinyue, HAN Yumeng, et al. Effect of Extraction pH on the Structure of Glycyrrhiza Polysaccharide with Acid-extraction[J]. Science and Technology of Food Industry, 2023, 44(19): 24−31. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110051.

Effect of Extraction pH on the Structure of Glycyrrhiza Polysaccharide with Acid-extraction

More Information
  • Received Date: November 06, 2022
  • Available Online: July 25, 2023
  • In this study, the Glycyrrhiza polysaccharides were prepared from Glycyrrhiza residues with different pH acid solutions (HCl, pH 1[P1], pH 3[P3], pH 5[P5]) as extraction solution. The monosaccharide composition and relative molecular weight of Glycyrrhiza polysaccharides were determined by Dionex system and high performance size exclusion chromatography. The structures of Glycyrrhiza polysaccharides were analyzed and compared by FT-IR spectroscopy, atomic force microscope (AFM), nuclear magnetic resonance (NMR), scanning electron microscope (SEM) and X-Ray diffraction (XRD). The results showed that three Glycyrrhiza polysaccharides were heteropolysaccharides, which were mainly composed of Fuc (fucose), Rha (rhamnose-rhamnose), Ara (arabose), Gal (galactose), Glc (glucose) and GalA (galacturonic acid) in different proportions. The weight average molecular weight (Mw) of P3 exhibited a multicomponent distribution. Mw(682 kDa) accounted for about 7.3% (w/w), and Mw(7110 kDa) was about 92.7% (w/w), accounting for the largest proportion. The FT-IR spectroscopy and NMR verified that the backbone of Glycyrrhiza polysaccharides could be composed of→4)-β-D-Glcp-(1→. Congo red experiment showed that P1 and P5 might have a triple helix conformation. The SEM showed a similar morphological structure both in P3 and P5, which was a network structure with a rough surface cumulated by a large number of spherical particles. While P1 was a lamellar structure with an uneven surface and multiple pores. The AFM revealed a mutually branched and intertwined structure of Glycyrrhiza polysaccharide, and a small amount of Glycyrrhiza polysaccharide displayed a microstructure of spherical aggregates. The XRD showed that P1 had crystal and amorphous structure, while P3 and P5 had no crystal structure. Therefore, the structure of Glycyrrhiza polysaccharide by acid extraction was significantly affected by different pH.
  • [1]
    牛志超. 新疆甘草中甘草酸的提取纯化工艺研究[D]. 北京: 中国石油大学, 2019

    NIU Z C. Xinjiang licorice glycyrrhizic acid in the extraction and purification technology research[D]. Beijing: China University of Petroleum, 2019.
    [2]
    李学禹. 中国甘草属(Glycyrrhiza L.)植物种质资源[C]//. 第二届中国甘草学术研讨会暨第二届新疆植物资源开发、利用与保护学术研讨会论文摘要集, 2004: 5−9

    LI X Y. China liquorice (Glycyrrhiza L.) germplasm resources[C]//. The second China licorice and the second academic seminar of xinjiang plant resources development, utilization and protection of academic seminar abstract set, 2004: 5−9.
    [3]
    李泽宇, 郝二伟, 李卉, 等. 甘草配伍应用的药理作用及机制分析[J]. 中国实验方剂学杂志,2022,28(14):270−282. [LI Z Y, HAO E W, LI H, et al. Pharmacological action and mechanism of compatibility application of Glycyrrhiza uralensis Fisch[J]. Chinese Journal of Experimental Formulae,2022,28(14):270−282.

    LI Z Y, HAO E W, LI H, et al. Pharmacological action and mechanism of compatibility application of Glycyrrhiza uralensis Fisch[J]. Chinese Journal of Experimental Formulae, 2022, 28(14): 270-282.
    [4]
    BADR S E, SAKR D M, MAHFOUZ S, et al. Licorice (Glycyrrhiza glabra L.): Chemical composition and biological impacts[J]. Res J Pharm Biol Chem Sci,2013,4(3):606−621.
    [5]
    徐谓, 李洪军, 贺稚非. 甘草提取物在食品中的应用研究进展[J]. 食品与发酵工业,2016,42(10):274−281. [XU W, LI H J, HE Z F. Research progress on application of glycyrrhiza extract in food[J]. Food and Fermentation Industries,2016,42(10):274−281.

    XU W, LI H J, HE Z F. Research progress on application of glycyrrhiza extract in food[J]. Food and fermentation industries, 2016, 42(10): 274-281.
    [6]
    罗芬芳, 胡善辉, 王冷眉, 等. 甘草的药理作用及其在养殖业中的应用前景[J]. 四川畜牧兽医,2020,47(3):32−34. [LUO F F, HU S H, WANG L M, et al. Pharmacological action of Glycyrrhiza uralensis Fisch and its application prospect in aquaculture[J]. Sichuan Animal Husbandry & veterinary medicine,2020,47(3):32−34.

    LUO F F, HU S H, WANG L M, et al. Pharmacological action of Glycyrrhiza uralensis Fisch and its application prospect in aquaculture[J]. Sichuan Animal Husbandry & veterinary medicine, 2020, 47(3): 32-34.
    [7]
    GUI X, WANG G, LI X, et al. Fungus-assisted mild acid pretreatment of Glycyrrhiza uralensis residues to enhance enzymatic hydrolysis and oil production by green microalga chlorella protothecoides[J]. Industrial Crops and Products,2014,62:466−473. doi: 10.1016/j.indcrop.2014.09.024
    [8]
    HE L, YAN X, LIANG J, et al. Comparison of different extraction methods for polysaccharides fromDendrobium officinale stem[J]. Carbohydrate Polymers,2018,198:101−108. doi: 10.1016/j.carbpol.2018.06.073
    [9]
    DONG Y, ZHAO M, SUN-WATERHOUSE D, et al. Absorption and desorption behaviour of the flavonoids from Glycyrrhiza glabra L. leaf on macroporous adsorption resins[J]. Food Chemistry,2015,168:538−545. doi: 10.1016/j.foodchem.2014.07.109
    [10]
    ROZI P, ABUDUWAILI A, MA S, et al. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza[J]. International Journal of Biological Macromolecules,2020,145(15):364−371.
    [11]
    李菀, 胡月, 李光霞, 等. 纤维素酶和果胶酶提取对甘草渣多糖抗氧化和抗肿瘤性能的影响[J]. 食品工业科技,2020,41(9):309−313, 319. [LI W, HU Y, LI G X, et al. Effects of cellulase and pectinase extraction on antioxidant and antitumor properties ofGlycyrrhiza residue polysaccharides[J]. Science and Technology of Food Industry,2020,41(9):309−313, 319.

    LI W, HU Y, LI G X, et al. Effects of cellulase and pectinase extraction on antioxidant and antitumor properties of glycyrrhiza residue polysaccharides[J]. Science and Technology of Food Industry, 2020, 41(9): 309-313, 319.
    [12]
    张晓晶. 甘草渣碱提多糖的提取分离、结构及降血糖活性研究[D]. 天津: 天津科技大学, 2020

    ZHANG X J. Study on extraction, separation, structure and hypoglycemic activity of polysaccharides from Glycyrrhiza liquorice residue[D]. Tianjin: Tianjin University of Science and Technology, 2020.
    [13]
    BAI L L, ZHU P L, WANG W B, et al. The influence of extraction pH on the chemical compositions, macromolecular characteristics, and rheological properties of polysaccharide: The case of okra polysaccharide[J]. Food Hydrocolloids,2020,102:105586. doi: 10.1016/j.foodhyd.2019.105586
    [14]
    SUN Y J, HOU S T, SONG S, et al. Impact of acidic, water and alkaline extraction on structural features, antioxidant activities of Laminaria japonica polysaccharides[J]. International Journal of Biological Macromolecules,2018,112:985−995. doi: 10.1016/j.ijbiomac.2018.02.066
    [15]
    CHAOUCH M A, HAFSA J, RIHOUEY C, et al. Effect of pH during extraction on the antioxidant and antiglycated activities of polysaccharides from Opuntia ficus indica[J]. Journal of Food Biochemistry,2016,40(3):316−325. doi: 10.1111/jfbc.12220
    [16]
    王佳, 陈海霞, 邢利沙, 等. 海南不同产区铁皮石斛活性成分的比较研究[J]. 天然产物研究与开发,2015,27(5):768−773. [WANG J, CHEN H X, XING L S, et al. Comparative study on active ingredients of Dendrobium dendrobium in different production areas of Hainan[J]. Natural Product Research and Development,2015,27(5):768−773.

    WANG J, CHEN H X, XING L S, WANG Y W, HUANG Y H, LIU H Q. Comparative study on active ingredients of Dendrobium dendrobium in different production areas of Hainan[J]. Natural Product Research and Development, 2015, 27(5): 768-773.
    [17]
    HU W, CHEN S, WU D, et al. Physicochemical and macromolecule properties of RG-I enriched pectin from citrus wastes by manosonication extraction[J]. International Journal of Biological Macromolecules,2021,176:332−341. doi: 10.1016/j.ijbiomac.2021.01.216
    [18]
    WU D, ZHENG J, HU W, et al. Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor[J]. Carbohydrate Polymers,2020,245:116526. doi: 10.1016/j.carbpol.2020.116526
    [19]
    CHEN C, ZHANG B, HUANG Q, et al. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: Characterization and hypoglycemic activity[J]. Industrial Crops and Products,2017,100:1−11. doi: 10.1016/j.indcrop.2017.01.042
    [20]
    GUO D, YIN X, WU D, et al. Natural polysaccharides from Glycyrrhiza uralensis residues with typical glucan structure showing inhibition on α-glucosidase activities[J]. International Journal of Biological Macromolecules,2023,224:776−785. doi: 10.1016/j.ijbiomac.2022.10.165
    [21]
    常相娜, 陈雪峰, 龚频, 等. 融水香菇多糖结构表征及体外抗氧化、降糖活性[J]. 中国食品添加剂,2022,33(4):1−9. [CHANG X N, CHEN X F, GONG P, et al. Meltwater xianggu mushroom polysaccharide structure characterization and in vitro antioxidant activity, hypoglycemic[J]. Journal of food additives in China,2022,33(4):1−9.

    CHANG X N, CHEN X F, GONG P, LIU M, WANG M R, WANG X J. Meltwater xianggu mushroom polysaccharide structure characterization and in vitro antioxidant activity, hypoglycemic[J]. Journal of food additives in China, 2022, (4): 1-9.
    [22]
    RANI R P, ANANDHARAJ M, SABHAPATHY P, et al. Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken[J]. International Journal of Biological Macromolecules,2017,96:1−10. doi: 10.1016/j.ijbiomac.2016.11.122
    [23]
    孙润广, 张静. 甘草多糖螺旋结构的原子力显微镜研究[J]. 化学学报,2006(24):2467−2472. [SUN R G, ZHANG J. Study on helical structure of Glycyrrhiza polysaccharides by atomic force microscopy[J]. Acta Chimica Sinica,2006(24):2467−2472.

    SUN R G, ZHANG J. Study on helical structure of Glycyrrhiza polysaccharides by atomic force microscopy[J]. Acta Chimica Sinica, 2006(24): 2467-2472.
    [24]
    ZHENG Y, TIAN J, KONG X, et al. Physicochemical and digestibility characterisation of maize starch-caffeic acid complexes[J]. Food Science & Technology,2020,121:108857.
    [25]
    徐涵, 刘云, 阚欢. 天然多糖提取纯化及生理功能活性研究进展[J]. 食品安全质量检测学报,2022,13(5):1382−1390. [XU H, LIU Y, KAN H. Research progress on extraction and purification of natural polysaccharides and physiological functional activity[J]. Journal of Food Safety and Quality Detection,2022,13(5):1382−1390.

    XU H, LIU Y, KAN H. Research progress on extraction and purification of natural polysaccharides and physiological functional activity[J]. Journal of Food Safety and Quality Detection, 2022, 13(05): 1382-1390.
    [26]
    CUI J, REN W, ZHAO C, et al. The structure-property relationships of acid-and alkali-extracted grapefruit peel pectins[J]. Carbohydrate Polymers,2020,229:115524. doi: 10.1016/j.carbpol.2019.115524
    [27]
    LI B, ZHANG N, FENG Q, et al. The core structure characterization and of ginseng neutral polysaccharide with the immune-enhancing activity[J]. International Journal of Biological Macromolecules,2019,123:713−722. doi: 10.1016/j.ijbiomac.2018.11.140
    [28]
    CHEN J, ZHANG X, HUO D, et al. Preliminary characterization, antioxidant and α-glucosidase inhibitory activities of polysaccharides from Mallotus furetianus[J]. Carbohydrate Polymers,2019,215:307−315. doi: 10.1016/j.carbpol.2019.03.099
    [29]
    KOKOULIN M S, KUZMICH A S, KALINOVSKY A I, et al. Structure and anticancer activity of sulfated O-polysaccharide from marine bacterium Cobetia litoralis KMM 3880T[J]. Carbohydrate Polymers,2016,154:55−61. doi: 10.1016/j.carbpol.2016.08.036
    [30]
    王林强. 核磁共振在多糖结构解析中的应用[D]. 上海: 华东师范大学, 2013

    WANG L Q. Application of nuclear magnetic resonance in the structure analysis of polysaccharide[D]. Shanghai: East China Normal University, 2013.
    [31]
    HE P, ZHANG A, ZHANG F, et al. Structure and bioactivity of a polysaccharide containing uronic acid from Polyporus umbellatus sclerotia[J]. Carbohydrate Polymers,2016,152:222−230. doi: 10.1016/j.carbpol.2016.07.010
    [32]
    YANG B, PRASAD K N, JIANG Y. Structure identification of a polysaccharide purified from litchi (Litchi chinensis Laminaria japonica Sonn.) pulp[J]. Carbohydrate Polymers,2016,137:570−575. doi: 10.1016/j.carbpol.2015.10.088
    [33]
    PAN L C, ZHU Y M, ZHU Z Y, et al. Chemical structure and effects of antioxidation and against α-glucosidase of natural polysaccharide from Glycyrrhiza inflata Batalin[J]. International Journal of Biological Macromolecules,2020,155:560−571. doi: 10.1016/j.ijbiomac.2020.03.192
    [34]
    MUTAILLIFU P, BOBAKULOV K, ABUDUWAILI A, et al. Structural characterization and antioxidant activities of a water soluble polysaccharide isolated from Glycyrrhiza glabra[J]. International Journal of Biological Macromolecules,2020,144:751−759. doi: 10.1016/j.ijbiomac.2019.11.245
    [35]
    ZHANG X, KONG X, HAO Y, et al. Chemical structure and inhibition on α-glucosidase of polysaccharide with alkaline-extracted from Glycyrrhiza inflata residue[J]. International Journal of Biological Macromolecules,2020,147:1125−1135. doi: 10.1016/j.ijbiomac.2019.10.081
    [36]
    PEI J J, WANG Z B, MA H L, et al. Structural features and antitumor activity of a novel polysaccharide from alkaline extract of Phellinus linteus mycelia[J]. Carbohydrate Polymers,2015,115:472−477. doi: 10.1016/j.carbpol.2014.09.017
    [37]
    ROSLUND M U, SÄWÉN E, LANDSTRÖM J, et al. Complete1H and 13C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program CASPER[J]. Carbohydrate Research,2011,346(11):1311−1319. doi: 10.1016/j.carres.2011.04.033
    [38]
    王家腾, 王贺聪, 刘蕾. 香菇多糖构效关系的研究进展[J]. 食品科学,2019,40(19):363−369. [WANG J T, WANG H C, LIU L. Research progress of structure activity relationship of lentinan[J]. Food Science,2019,40(19):363−369.

    WANG J T, WANG H C, LIU L. Research progress of structure activity relationship of lentinan[J]. Food Science, 2019, 40(19): 363-369.
    [39]
    JUN L I, ZHONG Y G, LIU C J. Purification and electron microscope analysis of lentinan[J]. Shanxi Agric.,2010,38(3):6−9.
    [40]
    霍达, 李琳, 张霞, 等. 玉竹多糖的提取工艺优化、结构表征及抗氧化活性的研究[J]. 食品科技,2020,45(7):200−208. [HUO D, LI L, ZHANG X, et al. Polygonatum polysaccharides extraction process optimization, structure characterization and antioxidant activity of the study[J]. Journal of Food Science and Technology,2020,45(7):200−208.

    HUO D, LI L, ZHANG X, CHEN J C, LI Y T, XIA M W, LIANG Y, LI B. Polygonatum polysaccharides extraction process optimization, structure characterization and antioxidant activity of the study[J]. Journal of Food Science and Technology, 2020, (7): 200-208.
    [41]
    LI X, WANG L, WANG Z. Structural characterization and antioxidant activity of polysaccharide from Hohenbuehelia serotina[J]. International Journal of Biological Macromolecules,2017,98:59−66. doi: 10.1016/j.ijbiomac.2016.12.089
    [42]
    JEDDOU K B, CHAARI F, MAKTOUF S, et al. Structural, functional, and antioxidant properties of water-soluble polysaccharides from potatoes peels[J]. Food Chemistry,2016,205:97−105. doi: 10.1016/j.foodchem.2016.02.108
  • Related Articles

    [1]YANG Chunlan, MAI Wanting, CHEN Shengjie, YE Yong, WANG Jie. Changes of Contents of Five Phenolic Acids Ingredients in Phyllanthus emblica L. during Different Harvesting Times by HPLC[J]. Science and Technology of Food Industry, 2023, 44(15): 346-353. DOI: 10.13386/j.issn1002-0306.2022100021
    [2]cover[J]. Science and Technology of Food Industry, 2021, 42(13).
    [3]contents[J]. Science and Technology of Food Industry, 2021, (12): 1-1.
    [4]contents[J]. Science and Technology of Food Industry, 2021, (11): 1-1.
    [5]contents[J]. Science and Technology of Food Industry, 2021, (8): 1-2.
    [6]contents[J]. Science and Technology of Food Industry, 2021, (7): 1-1.
    [7]JIANG Chun-jiao, JIANG Yu, GENG Zhi-ming, SONG Hui, ZHANG Mu-han, WANG Dao-ying, XU Wei-min. Simultaneous determination of 13-HODE and 9-HODE in cured meat products by normal-phase HPLC[J]. Science and Technology of Food Industry, 2017, (24): 268-273. DOI: 10.13386/j.issn1002-0306.2017.24.052
    [8]CHEN Xian-rang, LI Hong-bing, KANG Le, GUO Sheng-zhu, DENG Xi-ping. Analysis on relativity between the starch contents and β-amylase activities during storageroot development later stage of sweetpotato[J]. Science and Technology of Food Industry, 2013, (19): 93-96. DOI: 10.13386/j.issn1002-0306.2013.19.014
    [9]The effect of lightly baked scallop’s moisture content on quality and bacterial phase composition[J]. Science and Technology of Food Industry, 2013, (14): 322-326. DOI: 10.13386/j.issn1002-0306.2013.14.081
    [10]Study on water contents variation of fresh dough products with propanediol during shelf-life[J]. Science and Technology of Food Industry, 2013, (11): 287-289. DOI: 10.13386/j.issn1002-0306.2013.11.070
  • Cited by

    Periodical cited type(6)

    1. 曾慧,张明珠. 液液萃取-高效液相色谱法测定红茶中赭曲霉毒素A. 饮料工业. 2023(02): 25-28 .
    2. 吕志强,张滢. 茶叶中真菌毒素检测研究进展. 中国茶叶. 2023(05): 12-20 .
    3. 余璐,魏琛,张凯歌,林亲录,王青云. 枯草芽孢杆菌PW2产挥发性物质对赭曲霉的抑制作用. 食品科学. 2023(14): 125-133 .
    4. 周海燕,武爱波,刘娜. 茶叶中真菌与真菌毒素污染风险状况与防控研究进展. 中国食品卫生杂志. 2022(02): 390-397 .
    5. 曾艳,张矛,陈亚,张宇,杨巧慧,李霞雪,王永佳. 液相色谱-串联质谱法检测茶叶中真菌毒素的研究进展. 食品安全质量检测学报. 2022(12): 3834-3841 .
    6. 李静榕,毛世红,覃观凤,经飞跃,郑鹏,莫莉,徐昕,邱涛涛. 茶叶中真菌毒素风险评估及防控研究进展. 食品安全质量检测学报. 2022(19): 6354-6360 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (149) PDF downloads (21) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return