WU Tianxiang, LI Zhenxing, WU Yanyan, et al. Optimization of Ultrasonic Extraction Process and Anti-allergic Activity of Sulfated Polysaccharides from Kappaphycus alvarezii[J]. Science and Technology of Food Industry, 2023, 44(19): 208−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110034.
Citation: WU Tianxiang, LI Zhenxing, WU Yanyan, et al. Optimization of Ultrasonic Extraction Process and Anti-allergic Activity of Sulfated Polysaccharides from Kappaphycus alvarezii[J]. Science and Technology of Food Industry, 2023, 44(19): 208−216. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110034.

Optimization of Ultrasonic Extraction Process and Anti-allergic Activity of Sulfated Polysaccharides from Kappaphycus alvarezii

More Information
  • Received Date: November 06, 2022
  • Available Online: August 04, 2023
  • In order to obtain the best extraction process of sulfated polysaccharides from Kappaphycus alvarezii and determine its antiallergic activity, the single factor experiments were carried out firstly. The polysaccharides yield of Kappaphycus alvarezii was chose as the investigation index, and the ratio of material to liquid, ultrasonic pretreatment time and extraction time were selected for Box-Behnken response surface design. Then the extracted crude polysaccharides was purified through the DEAE-52 cellulose chromatography column. The effects of the purified polysaccharides on RBL-2H3 cell viability, inhibition of cell degranulation and regulation of histamine release were measured by RBL-2H3 cell model method. The results showed that the optimum extraction condition of polysaccharides from Kappaphycus alvarezii was as follows: The ratio of material to liquid (w/v) was 1:92 g/mL, the ultrasonic pretreatment time was 40 min, and the extraction time was 4 h. Under the optimum extraction conditions, the extraction rate of polysaccharides from Kappaphycus alvarezii was 13.92%. The KSP(Kappaphycus alvarezii Sulfated Polysaccharides), a component purified by DEAE-52 cellulose chromatography, had no significant inhibition on the activity of RBL-2H3 cells in the concentration range from 50 to 1200 μg/mL, and also had no cytotoxicity. The β-Hexosaminidase activity and histamine release inhibition rates of RBL-2H3 cells stimulated by 2,4-Dinitrophenyl-Bovine Serum Albumin (DNP-BSA) with 25, 50 and 100 μg/mL KSP were 36.3%, 37.0%, 51.7%, and 17.5%, 18.3%, 42.0% respectively. In conclusion, the process parameters obtained in this test are feasible, KSP had no obvious toxicity to RBL-2H3 cells and showed significant inhibition of degranulation and histamine release, with good in vitro anti-allergic activity. This study can provide a reference for the development of nutritional functional food with anti-allergic activity using Kappaphycus alvarezii as raw material.
  • [1]
    刘涛. 南海常见大型海藻图鉴[M]. 北京: 海洋出版社, 2017: 84

    LIU T. A illustrated guide to common large seaweed in the South China Sea[M]. Beijing: China Ocean Press, 2017: 84.
    [2]
    曾广兴. 异枝麒麟菜人工养殖技术[J]. 水产养殖,2001(3):5−7. [ZENG G X. Artificial culture technology of Eucheuma striatum[J]. Journal of Aquaculture,2001(3):5−7. doi: 10.3969/j.issn.1004-2091.2001.03.002

    ZENG G X. Artificial culture technology of Eucheuma striatum[J]. Journal of Aquaculture, 2001(3): 5-7. doi: 10.3969/j.issn.1004-2091.2001.03.002
    [3]
    ADHARINI RI, SUYONO E A, SUADI, et al. A comparison of nutritional values of Kappaphycus alvarezii, Kappaphycus striatum, and Kappaphycus spinosum from the farming sites in gorontalo province, sulawesi, indonesia[J]. Journal of Applied Phycology,2019,31(1):725−730. doi: 10.1007/s10811-018-1540-0
    [4]
    BHUYAR P, SUNDARARAJU S, RAHIM M H A, et al. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed[J]. SN Applied Sciences,2021,3:485. doi: 10.1007/s42452-021-04477-9
    [5]
    KULENDRAN S, PAHALAWATTAARACHCHI V, SHANMUGAM M. Farming of Kappaphycus alvarezii in sri lanka: Current status & opportunities to develop carrageenan industry[J]. Phycologia,2021,60:21−21.
    [6]
    NAGARANI N, KUMARAGURU A K. Investigation of the effect of k-alvarezii on antioxidant enzymes, cell viability and dna damage in male rats[J]. Frontiers in Life Science,2012,6:3−4, 97−105. doi: 10.1080/21553769.2012.745453
    [7]
    YULIANTI E, SUNARTI, WAHYUNINGSIH M S H. The effect of Kappaphycus alvarezii fraction on plasma glucose, advanced glycation end-products formation, and renal rage gene expression[J]. Heliyon,2021,7(1):e05978. doi: 10.1016/j.heliyon.2021.e05978
    [8]
    WANYONYI S, DU PREEZ R, BROWN L, et al. Kappaphycus alvarezii as a food supplement prevents diet-induced metabolic syndrome in rats[J]. Nutrients,2017,9(11):1261. doi: 10.3390/nu9111261
    [9]
    BINDU M S, LEVINE I A. The commercial red seaweed Kappaphycus alvarezii-an overview on farming and environment[J]. Journal of Applied Phycology,2011,23(4):789−796. doi: 10.1007/s10811-010-9570-2
    [10]
    张亚旗, 卢珍华, 黄世英, 等. 钝顶螺旋藻多糖的提取工艺及其生物活性[J]. 集美大学学报(自然科学版),2020,25(6):420−429. [ZHANG Y Q, LU Z H, HUANG S Y, et al. Extraction technology and bioactivity of polysaccharide from Spirulina platensis[J]. Journal of Jimei University (Natural Science),2020,25(6):420−429.

    ZHANG Y Q, LU Z H, HUANG S Y, et al. Extraction technology and bioactivity of polysaccharide from Spirulina platensis[J]. Journal of Jimei University(Natural Science), 2020, 25(6): 420-429.
    [11]
    XIA Z, WEI L, DU Y, et al. Effect of the tibetan medicine zuotai on degranulation and inflammatory mediator release in rbl-2h3 cells[J]. Chemical & Pharmaceutical Bulletin,2018,66(8):818−821.
    [12]
    PASSANTE E, EHRHARDT C, SHERIDAN H, et al. Rbl-2h3 cells are an imprecise model for mast cell mediator release[J]. Inflammation Research,2009,58:611−618. doi: 10.1007/s00011-009-0028-4
    [13]
    陈胜军, 刘欢, 杨少玲, 等. 舌状蜈蚣藻多糖提取工艺及抗氧化活性分析[J]. 上海海洋大学学报,2020,29(1):153−160. [CHEN S J, LIU H, YANG S L, et al. Extraction technology and antioxidant activity of polysaccharides from Grateloupia livida[J]. Journal of Shanghai Ocean University,2020,29(1):153−160. doi: 10.12024/jsou.20181002415

    CHEN S J, LIU H, YANG S L, et al. Extraction technology and antioxidant activity of polysaccharides from grateloupia livida[J]. Journal of Shanghai Ocean University, 2020, 29(1): 153-160. doi: 10.12024/jsou.20181002415
    [14]
    AHMAD A, ALKHARFY K M, WANI T A, et al. Application of box-behnken design for ultrasonic-assisted extraction of polysaccharides from Paeonia emodi[J]. International Journal of Biological Macromolecules,2015,72:990−997. doi: 10.1016/j.ijbiomac.2014.10.011
    [15]
    刘言炜, 张发宇, 汪家权. 响应面法优化超声波辅助冻融提取蓝藻多糖工艺研究[J]. 食品科技,2018,43(5):198−205. [LIU Y W, ZHANG F Y, WANG J Q. Study on ultrasonic-assisted freezing and thawing extraction of Cyanobacteria polysaccharide by response surface methodology[J]. Food Science and Technology,2018,43(5):198−205. doi: 10.13684/j.cnki.spkj.2018.05.036

    LIU Y W, ZHANG F Y, WANG J Q. Study on ultrasonic-assisted freezing and thawing extraction of Cyanobacteria polysaccharide by response surface methodology[J]. Food Science and Technology, 2018, 43(5): 198-205. doi: 10.13684/j.cnki.spkj.2018.05.036
    [16]
    李银停. 坛紫菜酶解多糖的分离纯化及生物活性研究[D]. 杭州: 浙江工商大学, 2019

    LI Y T. Isolation, purification and biological evaluation of enzymatic hydrolysate of polysaccharide from Porphyra haitanensis[D]. Hangzhou: Zhejiang Gongshang University, 2019
    [17]
    徐莎莎. 耳突麒麟菜寡糖的抗食物过敏研究[D]. 厦门: 集美大学, 2017

    XU S S. Anti-food allergy activity of Eucheuma cottonii sulfated oligosaccharide[D]. Xiamen: Jimei University, 2017.
    [18]
    徐美蓉, 李晓蓉, 李婷. 响应面分析优化蒽酮硫酸法测定葡萄叶片中可溶性糖的含量[J]. 甘肃农业科技,2017(11):25−29. [XU M R, LI X R, LI T. Determination of soluble sugar from grape leaves by optimizing of anthrone-sulfuric acid method by response surface methodology[J]. Gansu Agricultural Science and Technology,2017(11):25−29.

    XU M R, LI X R, LI T. Determination of soluble sugar from grape leaves by optimizing of anthrone-sulfuric acid method by response surface methodology[J]. Gansu Agricultural Science and Technology, 2017(11): 25-29.
    [19]
    田凤鸣, 陈强, 苏满春, 等. 京大戟多糖的提取及苯酚-硫酸法测定其多糖含量的研究[J]. 四川理工学院学报(自然科学版),2018,31(4):14−19. [TIAN F M, CHEN Q, SU M C, et al. Study on extraction of euphorbia pekinensis polysaccharides and determination of its polysaccharides by phenol sulfuric acid method[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition,2018,31(4):14−19.

    TIAN F M, CHEN Q, SU M C, et al. Study on extraction of euphorbia pekinensis polysaccharides and determination of its polysaccharides by phenol sulfuric acid method[J]. Journal of Sichuan University of Science & Engineering(Natural Science Edition, 2018, 31(4): 14-19.
    [20]
    温文娟, 刘珊, 黄远丽. 苯酚硫酸法与蒽酮硫酸法测定香菇多糖含量比较[J]. 现代食品,2020(21):177−179. [WEN W J, LIU S, HUANG Y L. Comparison of phenol sulfuric and anthrone sulfuric method for determination of lentinan[J]. Modern Food,2020(21):177−179. doi: 10.16736/j.cnki.cn41-1434/ts.2020.21.054

    WEN W J, LIU S, HUANG Y L. Comparison of phenol sulfuric and anthrone sulfuric method for determination of lentinan[J]. Modern Food, 2020(21): 177-179. doi: 10.16736/j.cnki.cn41-1434/ts.2020.21.054
    [21]
    白冰瑶, 李泉岑, 马欣悦, 等. 响应面法优化超声辅助低共熔溶剂提取红枣多糖工艺[J]. 食品研究与开发,2022,43(18):122−129. [BAI B Y, LI Q C, MA X Y, et al. Optimization of ultrasound-assisted deep eutectic solvent extraction of polysaccharides from jujube[J]. Food Research and Development,2022,43(18):122−129. doi: 10.12161/j.issn.1005-6521.2022.18.017

    BAI B Y, LI Q C, MA X Y, et al. Optimization of ultrasound-assisted deep eutectic solvent extraction of polysaccharides from jujube[J]. Food Research and Development, 2022, 43(18): 122-129. doi: 10.12161/j.issn.1005-6521.2022.18.017
    [22]
    郭超, 宋慧, 梁凤, 等. 金针菇多糖的提取工艺优化及荧光标记研究[J]. 菌物研究,2018,16(1):43−50. [GU C, SONG H, LIANG F, et al. The study on the optimization of extraction technology and fluorescence labeling of Flammulina velutipes polysaccharides[J]. Journal of Fungal Research,2018,16(1):43−50. doi: 10.13341/j.jfr.2018.1117

    GU C, SONG H, LIANG F, et al. The study on the optimization of extraction technology and fluorescence labeling of Flammulina velutipes polysaccharides[J]. Journal of Fungal Research, 2018, 16(1): 43-50. doi: 10.13341/j.jfr.2018.1117
    [23]
    陈培琳, 陈钏杰, 周雨嘉, 等. 响应面分析法优化莲子心多糖的提取工艺[J]. 福建农林大学学报(自然科学版),2017,46(6):708−715. [CHEN P L, CHEN C, ZHOU Y J, et al. Optimization of extraction technology of polysaccharides from Lotus plumula by response surface methodology[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition),2017,46(6):708−715.

    CHEN P L, CHEN C, ZHOU Y J, et al. Optimization of extraction technology of polysaccharides from Lotus plumula by response surface methodology[J]. Journal of Fujian Agriculture and Forestry University(Natural Science Edition), 2017, 46(6): 708-715.
    [24]
    田谷正男, 胡莹, 蒋凤珍, 等. 黄连须多糖水浴提取工艺优化及体外抗氧化活性研究[J]. 湖北民族大学学报(自然科学版),2022,40(2):142−149. [TIAN G Z N, HU Y, JIANG F Z, et al. optimization of water bath extraction process and antioxidant activity of coptidis radix fibrous polysaccharides[J]. Journal of Hubei Minzu University (Natural Science Edition),2022,40(2):142−149.

    TIAN G Z N, HU Y, JIANG F Z, et al. optimization of water bath extraction process and antioxidant activity of coptidis radix fibrous polysaccharides[J]. Journal of Hubei Minzu University(Natural Science Edition), 2022, 40(2): 142-149.
    [25]
    陈菊. 黔东南产续断多糖提取工艺优化及其抗氧化特性[J]. 中国民族民间医药,2022,31(12):25−30. [CHEN J. Optimization of extraction technology of polysaccharides from Dipsaci radix in guizhou province and its antioxidant activity[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2022,31(12):25−30. doi: 10.3969/j.issn.1007-8517.2022.12.zgmzmjyyzz202212008

    CHEN J. Optimization of extraction technology of polysaccharides from Dipsaci radix in guizhou province and its antioxidant activity[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy, 2022, 31(12): 25-30. doi: 10.3969/j.issn.1007-8517.2022.12.zgmzmjyyzz202212008
    [26]
    ZHU C P, ZHAI X C, LI L Q, et al. Response surface optimization of ultrasound-assisted polysaccharides extraction from pomegranate peel[J]. Food Chemistry,2015,177:139−146. doi: 10.1016/j.foodchem.2015.01.022
    [27]
    和法涛, 刘光鹏, 朱风涛, 等. 响应面法优化热水法浸提猴头菇多糖工艺提高多糖得率[J]. 食品科技,2015,40(1):210−215. [HE F T, LIU G P, ZHU F T, et al. Optimization hot water extraction process of polysaccharide from Hericium erinaceus for improving the yield of polysaccharide by response surface methodology[J]. Food Science and Technology,2015,40(1):210−215. doi: 10.13684/j.cnki.spkj.2015.01.044

    HE F T, LIU G P, ZHU F T, et al. Optimization hot water extraction process of polysaccharide from Hericium erinaceus for improving the yield of polysaccharide by response surface methodology[J]. Food Science and Technology, 2015, 40(1): 210-215. doi: 10.13684/j.cnki.spkj.2015.01.044
    [28]
    廖素凤, 陈剑雄, 黄志伟, 等. 响应曲面分析法优化葡萄籽原花青素提取工艺的研究[J]. 热带作物学报,2011,32(3):554−559. [LIAO S F, CHEN J X, HUANG Z W, et al. Optimization for extraction of proanthocyanidins from grape seeds using response surface method[J]. Chinese Journal of Tropical Crops,2011,32(3):554−559.

    LIAO S F, CHEN J X, HUANG Z W, et al. Optimization for extraction of proanthocyanidins from grape seeds using response surface method[J]. Chinese Journal of Tropical Crops, 2011, 32(3): 554-559.
    [29]
    武忠伟, 刘明久, 窦艳萍, 等. 虫草多糖醇沉和DEAE-32纤维素柱层析特性研究[J]. 食品科学,2008(2):86−90. [WU Z W, LIU M J, DOU Y P, et al. Study on ethanol precipitation and DEAE-32 cellulose column chromatography characteristics of Cordyceps sinensis polysaccharides[J]. Food Science,2008(2):86−90. doi: 10.3321/j.issn:1002-6630.2008.02.012

    WU Z W, LIU M J, DOU Y P, et al. Study on ethanol precipitation and DEAE-32 cellulose column chromatography characteristics of Cordyceps sinensis polysaccharides[J]. Food Science, 2008(2): 86-90. doi: 10.3321/j.issn:1002-6630.2008.02.012
    [30]
    MEDICA A J, GIBB Z, SHERIDAN A, et al. Causative mechanisms and functional correlates of MTT reduction in stallion spermatozoa[J]. Reproduction,2022,163(6):341−350. doi: 10.1530/REP-21-0464
    [31]
    YANG L, ZHU X, SUGA M, et al. Evaluation of the anti-allergic effect of natural medicines on mast cell by using two-dimensional surface plasmon resonance observation[J]. Electrochemistry,2021,89(1):7−11. doi: 10.5796/electrochemistry.20-00113
    [32]
    DUNFORD P J, HOLGATE S T. The role of histamine in asthma[M]//THURMOND R L. Histamine in Inflammation: 709. 2010: 53−66.
    [33]
    THANGAM E B, JEMIMA E A, SINGH H, et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets[J]. Frontiers in Immunology,2018,9:1873. doi: 10.3389/fimmu.2018.01873
    [34]
    高媛媛. 紫菜多糖及深海放线菌代谢产物的抗过敏活性[D]. 厦门: 集美大学, 2018

    GAO Y Y. Anti-allergy activity of Porphyran and metabolite from deep-sea actinomycetes[D]. Xiamen: Jimei University, 2018.
  • Cited by

    Periodical cited type(4)

    1. 马琳,祁琪,李雅轩,赵昕. 甜蜜素对果蝇繁殖生长及运动能力的影响. 首都师范大学学报(自然科学版). 2024(04): 36-41 .
    2. 严静,薛秋艳,王旸,陈汶意,谢诗晴,江津津,黎攀,杜冰. 发酵米荞对高脂肪秀丽隐杆线虫的降脂及抗氧化作用. 食品工业科技. 2023(06): 8-15 . 本站查看
    3. 祁少俊,唐延金,张正铎,吴虹,张佳程,秦川,刘锐,高希宝. 补充多种微量元素对高糖饮食大鼠的保护作用. 山东大学学报(医学版). 2023(07): 19-26 .
    4. 文明明,毕洁,贺艳萍,戴煌,张威,舒在习,肖安红. 高糖饮食抑制后代雄性果蝇寿命和育性及其作用机制. 现代食品科技. 2022(10): 9-18 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (117) PDF downloads (7) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return