Citation: | ZHUANG Qianfei, LIU Dandan, CHEN Zeyu, et al. Optimization of Ultrasonic-assisted Two-aqueous Extraction of Flavonoids from Rosa roxburghii Tratt and Its Inhibitory Effect on Xanthine Oxidase Activity[J]. Science and Technology of Food Industry, 2023, 44(17): 222−230. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100316. |
[1] |
CHEN C, TAN S, REN T, et al. Polyphenol from Rosa roxburghii Tratt fruit ameliorates the symptoms of diabetes by activating the P13K/AKT insulin pathway in db/db mice[J]. Foods,2022,11(5):636. doi: 10.3390/foods11050636
|
[2] |
ZENG F F, GE Z W, LIMWACHIRANON J, et al. Antioxidant and tyrosinase inhibitory activity of Rosa roxburghii fruit and identification of main bioactive phytochemicals by UPLC-Triple-TOF/MS[J]. International Journal of Food Science and Technology,2017,52(4):897−905. doi: 10.1111/ijfs.13353
|
[3] |
XU S J, WANG X, WANG T Y, et al. Flavonoids from Rosa roxburghii Tratt prevent reactive oxygen species-mediated DNA damage in thymus cells both combined with and without PARP-1 expression after exposure to radiation in vivo[J]. Aging-Us,2020,12(16):16368−16389. doi: 10.18632/aging.103688
|
[4] |
ZHU J Z, ZHANG B, WANG B X, et al. In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on alpha-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose[J]. Journal of Functional Foods,2019,54:13−21. doi: 10.1016/j.jff.2019.01.009
|
[5] |
DING X J, YU Y H, DING Z H. Interaction between active compounds from Rosa roxburghii Tratt and beta-glucosidase: Characterization of complexes and binding mechanism[J]. Lwt-Food Science and Technology,2022,165:8.
|
[6] |
WU P H, HAN S C H, WU M H. Beneficial effects of hydroalcoholic extract from Rosa roxburghii Tratt fruit on hyperlipidemia in high-fat-fed rats[J]. Acta Cardiologica Sinica,2020,36(2):148−159.
|
[7] |
WANG J M, WANG G P, WANG X T, et al. Chemical constituents and bioactivities of Rosa roxburghii: A systematic review[J]. Food Science and Technology,2022,42:14.
|
[8] |
YUAN H F, WANG Y R, CHEN H, et al. Protective effect of flavonoids from Rosa roxburghii Tratt on myocardial cells via autophagy[J]. 3 Biotech,2020,10(2):9.
|
[9] |
XU S J, ZHANG F, WANG L J, et al. Flavonoids of Rosa roxburghii Tratt offers protection against radiation induced apoptosis and inflammation in mouse thymus[J]. Apoptosis,2018,23(9-10):470−483. doi: 10.1007/s10495-018-1466-7
|
[10] |
XU P, LIU X X, XIONG X W, et al. Flavonoids of Rosa roxburghii Tratt exhibit anti-apoptosis properties by regulating PARP-1/AIF[J]. Journal of Cellular Biochemistry,2017,118(11):3943−3952. doi: 10.1002/jcb.26049
|
[11] |
DORDEVIC T, ANTOV M. Ultrasound assisted extraction in aqueous two-phase system for the integrated extraction and separation of antioxidants from wheat chaff[J]. Separation and Purification Technology,2017,182:52−58. doi: 10.1016/j.seppur.2017.03.025
|
[12] |
WANG W H, LI W L, CHEN C Y, et al. Antioxidant ability of Chenopodium formosanum extracted using an ethanol–ammonium sulfate two-phase system[J]. Chemical and Biological Technologies in Agriculture,2022,9(1):1−8. doi: 10.1186/s40538-021-00266-z
|
[13] |
WANG W X, YANG J B, YANG J. Optimization of ultrasound-assisted aqueous two phase extraction of polyphenols from olive leaves[J]. Preparative Biochemistry & Biotechnology,2021,51(8):821−831.
|
[14] |
ZHU J, KOU X, WU C, ET AL. Enhanced extraction of bioactive natural products using ultrasound-assisted aqueous two-phase system: Application to flavonoids extraction from jujube peels[J]. Food Chemistry,2022,395:133530. doi: 10.1016/j.foodchem.2022.133530
|
[15] |
AHMAD M M, PRZYBYCIEN T. Towards optimal aqueous two-phase extraction system flowsheets for protein purification[J]. Journal of Chemical Technology and Biotechnology,2013,88(1):62−71. doi: 10.1002/jctb.3858
|
[16] |
RUFINO A F, ALMEIDA M R, SHARMA M, et al. Separation of albumin from bovine serum applying Ionic-liquid-based aqueous biphasic systems[J]. Applied Sciences,2022,12(2):707. doi: 10.3390/app12020707
|
[17] |
HU J, LIU J, HUANG X, et al. Efficient extraction of polysaccharides from Lycium barbarum L. by aqueous two-phase system combined with tissue-smashing extraction[J]. Industrial Crops and Products,2022,184:115036. doi: 10.1016/j.indcrop.2022.115036
|
[18] |
LI G, MA X K, JIANG Y M, et al. Aqueous two-phase extraction of polysaccharides from Selaginella doederleinii and their bioactivity study[J]. Process Biochemistry,2022,118:274−282. doi: 10.1016/j.procbio.2022.04.024
|
[19] |
MAO G, YU P, ZHAO T, et al. Aqueous two-phase simultaneous extraction and purification of a polysaccharide from Grifola frondosa: Process optimization, structural characteristics and antioxidant activity[J]. Industrial Crops and Products,2022,184:114962. doi: 10.1016/j.indcrop.2022.114962
|
[20] |
SUNG Y Y, YUK H J, KIM D S. Saengmaeksan, a traditional herbal formulation consisting of Panax ginseng, ameliorates hyperuricemia by inhibiting xanthine oxidase activity and enhancing urate excretion in rats[J]. Journal of Ginseng Research,2021,45(5):565−574. doi: 10.1016/j.jgr.2021.01.001
|
[21] |
QIAO J, LU G, WU G, et al. Influence of different pretreatments and drying methods on the chemical compositions and bioactivities of Smilacis glabrae Rhizoma[J]. Chinese Medicine,2022,17(1):1−21. doi: 10.1186/s13020-021-00565-5
|
[22] |
DAI H N, LÜ S, QIAO Z A, et al. The active components of sunflower (Helianthus annuus L.) calathide and the effects on urate nephropathy based on COX-2/PGE2 signaling pathway and the urate transporter URAT1, ABCG2, and GLUT9[J]. Frontiers in Nutrition, 2022, 16.
|
[23] |
HU Y, SHI Y F, CHEN H, et al. Blockade of autophagy prevents the progression of hyperuricemic hephropathy through inhibiting NLRP3 inflammasome-mediated pyroptosis[J]. Frontiers in Immunology, 2022, 2022.
|
[24] |
徐梦琪, 徐德平. 土茯苓降尿酸活性成分研究[J]. 天然产物研究与开发,2020,32(11):1860−1865. [XU M Q, XU D P. Anti-uric acid constituents from Rhizoma Smilacis Glabrae
J]. Natural Product Research and Development,2020,32(11):1860−1865.
|
[25] |
刘静波, 郭兵兵, 张燕. 玉米须抑制黄嘌呤氧化酶活性成分的提取工艺研究[J]. 食品工业科技,2014,35(13):232−235. [LIU J B, GUO B B, ZHANG Y. Extraction of anti-xanthine oxidase substances from corn silk[J]. Science and Technology of Food Industry,2014,35(13):232−235.
LIU J B, GUO B B, ZHANG Y. Extraction of anti-xanthine oxidase substances from corn silk[J]. Science and Technology of Food Industry, 2014, 35(13): 232-235.
|
[26] |
郭亚芳, 甘静, 李东东, 等. 中草药对尿酸转运体的影响[J]. 中国中西医结合肾病杂志,2020,21(9):839−842. [GUO Y F, GAN J, LI D D, et al. Effect of Chinese herbal medicine on uric acid transporter[J]. Chinese Journal of Integrated Traditional and Western Nephrology,2020,21(9):839−842.
GUO Y F, GAN J, LI D D, et al. Effect of Chinese herbal medicine on uric acid transporter[J]. Chinese Journal of Integrated Traditional and Western Nephrology, 2020, 21(9): 839-842.
|
[27] |
符静泉, 郭为, 韦曼莉, 等. 猫须草水提物对痛风性肾病大鼠肾脏URAT1、OAT1及病理的影响[J]. 中成药,2021,43(4):877−882. [FU J Q, GUO W, WEI M L, et al. Effects of aqueous extract of Orthosiphon stamineus on renal URAT1, OAT1 and pathology of rats with gouty nephropathy[J]. Chinese Traditional Patent Medicine,2021,43(4):877−882.
FU J Q, GUO W, WEI M L, et al. Effects of aqueous extract of Orthosiphon stamineus on renal URAT1, OAT1 and pathology of rats with gouty nephropathy[J]. Chinese Traditional Patent Medicine, 2021, 43(4): 877-882.
|
[28] |
姜健, 刘波, 李刚, 等. 离子液体双水相萃取及检测牛血中血红蛋白[J]. 化学研究与应用,2022,34(9):2142−2148. [JIANG J, LIU B, LI G, et al. Extraction and detection of hemoglobin in bovine blood by ionic liquid-based aqueous bbiphasic system[J]. Chemical Research and Application,2022,34(9):2142−2148.
JIANG J, LIU B, LI G, et al. Extraction and detection of hemoglobin in bovine blood by ionic liquid-based aqueous bbiphasic system[J]. Chemical Research and Application, 2022, 34(9): 2142-2148.
|
[29] |
WANG L, LUO Y, WU Y N, et al. Fermentation and complex enzyme hydrolysis for improving the total soluble phenolic contents, flavonoid aglycones contents and bio-activities of guava leaves tea[J]. Food Chemistry,2018,264:189−198. doi: 10.1016/j.foodchem.2018.05.035
|
[30] |
QIN B L, LIU X C, CUI H M, et al. Aqueous two-phase assisted by ultrasound for the extraction of anthocyanins from Lycium ruthenicum Murr[J]. Preparative Biochemistry & Biotechnology,2017,47(9):881−888.
|
[31] |
LÜ S M, ZHANG M Q, CHEN J S, et al. Study on the anti-hyperuricemic bioactivity and chemical components of Sterculiae lychnophorae Semen[J]. Journal of Functional Foods,2022,95:105173. doi: 10.1016/j.jff.2022.105173
|
[32] |
LOH K E, CHIN Y S, ISMAIL I S, et al. Rapid characterisation of xanthine oxidase inhibitors from the flowers of Chrysanthemum morifolium Ramat using metabolomics approach[J]. Phytochemical Analysis,2022,33(1):12−22. doi: 10.1002/pca.3057
|
[33] |
俞耀文, 戴国庆, 华浩立, 等. 乙醇-硫酸铵双水相体系提取桃花总黄酮及其抗氧化性能[J]. 食品工业科技,2022,43(4):187−195. [YU Y W, DAI G Q, HUA H L, et al. Ethanol-ammonium sulfate aqueous two-phase extraction of total flavonoids from peach blossom and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(4):187−195.
YU Y W, DAI G Q, HUA H L, et al. Ethanol-ammonium sulfate aqueous two-phase extraction of total flavonoids from peach blossom and its antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(4): 187-195.
|
[34] |
汪建红. 双水相辅助内部沸腾法提取桂花叶黄酮[J]. 食品研究与开发,2022,43(4):22−28. [WANG J H. Extraction of flavonoid in Osmanthus leaves by aqueous two-phase system assisted inner ebullition method[J]. Food Research and Development,2022,43(4):22−28.
WANG J H. Extraction of flavonoid in Osmanthus leaves by aqueous two-phase system assisted inner ebullition method[J]. Food Research and Development, 2022, 43(4): 22-28.
|
[35] |
DERRIEN M, BADR A, GOSSELIN A, et al. Optimization of a green process for the extraction of lutein and chlorophyll from spinach by-products using response surface methodology (RSM)[J]. LWT-Food Science and Technology,2017,79:170−177. doi: 10.1016/j.lwt.2017.01.010
|
[36] |
于建丽, 王汝华, 孟琬星, 等. 桑叶黄酮的双水相萃取及其抗氧化活性研究[J]. 食品研究与开发,2022,43(9):32−39. [YU J L, WANG R H, MENG W X, et al. Aqueous two-phase extraction of Mulberry leaf flavonoids and their antioxidant activity[J]. Food Research and Development,2022,43(9):32−39.
YU J L, WANG R H, MENG W X, et al. Aqueous two-phase extraction of Mulberry leaf flavonoids and their antioxidant activity[J]. Food Research and Development, 2022, 43(9): 32-39.
|
[37] |
玉澜, 龙海华, 唐森, 等. 超声波辅助乙醇-硫酸铵双水相体系提取绞股蓝总黄酮工艺研究[J]. 中国饲料,2021(13):24−28. [YU L, LONG H H, TANG S, et al. Ultrasonic assisted ethanol-ammonium sulfate aqueous two-phase system extraction of total flavonoids from Gynostemma pentaphyllum[J]. China Feed,2021(13):24−28.
YU L, LONG H H, TANG S, et al. Ultrasonic assisted ethanol-ammonium sulfate aqueous two-phase system extraction of total flavonoids from Gynostemma Pentaphyllum[J]. China Feed, 2021(13): 24-28.
|
[38] |
臧青民, 李秋珊, 徐燕波, 等. 超声波辅助双水相体系优化橘红花总黄酮提取工艺及其抗氧化活性[J]. 化学试剂,2022,44(4):557−563. [ZANG Q M, LI Q S, XU Y B, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction of total flavonoids from Exocarpium citri grandis flowers and its antioxidant activity[J]. Chemical Reagents,2022,44(4):557−563.
ZANG Q M, LI Q S, XU Y B, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction of total flavonoids from Exocarpium citri grandis flowers and its antioxidant activity[J]. Chemical Reagents, 2022, 44(4): 557-563.
|
[39] |
HUI, ZHANG, HUI-PENG, et al. Screening for selective inhibitors of xanthine oxidase from Flos Chrysanthemum using ultrafiltration LC-MS combined with enzyme channel blocking[J]. Journal of Chromatography, B. Analytical Technologies in the Biomedical and Life Sciences,2014,961:56−61. doi: 10.1016/j.jchromb.2014.05.001
|
[40] |
LI F, LIU Y P, XIE Y Y, et al. Epigallocatechin gallate reduces uric acid levels by regulating xanthine oxidase activity and uric acid excretion in vitro and in vivo[J]. Annals of Palliative Medicine,2020,9(2):331−338. doi: 10.21037/apm.2019.11.28
|
[41] |
BOUCHEFFA S, SOBHI W, ATTOUI A, et al. Effect of the main constituents of Pistacia lentiscus leaves against the DPPH radical and xanthine oxidase: experimental and theoretical study[J]. Journal of Biomolecular Structure & Dynamics,2022,40(20):9870−9884.
|
[42] |
郝婷婷. 七种药用植物降尿酸效果评价[D]. 沈阳: 辽宁大学, 2020.
HAO T T. Evaluation of seven medicinal plants in uric acid levels reducing effect[D]. Shenyang: Liaoning University, 2020.
|
[43] |
钟英英, 周佳明, 叶美凤, 等. 辣木叶提取物对黄嘌呤氧化酶活性的抑制[J]. 食品工业,2020,41(11):55−58. [ZHONG Y Y, ZHOU J M, YE M F, et al. Effects of Moringa oleifera leaves extracts on lipase activity[J]. The Food Industry,2020,41(11):55−58.
ZHONG Y Y, ZHOU J M, YE M F, et al. Effects of Moringa oleifera leaves extracts on lipase activity[J]. The Food Industry, 2020, 41(11): 55-58.
|
[44] |
申启荣. 中药黄嘌呤氧化酶抑制剂的筛选及抑制动力学研究[D]. 南昌: 南昌大学, 2015.
SHEN Q R. The screening and study on the inhibition kinetics of xanthine oxidase inhibitors from Chinese herbal medicine[D]. Nanchang: Nanchang University, 2015.
|
1. |
潘玲,冮洁,薛晨光,杨新鹏. 东北少数民族特色发酵食品研究进展. 大连民族大学学报. 2022(01): 8-11+17 .
![]() |