ZHANG Xin, LIU Gongliang, BAI Weidong, et al. Research Progress and Application of Prokaryotic Laccase[J]. Science and Technology of Food Industry, 2023, 44(15): 451−462. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100306.
Citation: ZHANG Xin, LIU Gongliang, BAI Weidong, et al. Research Progress and Application of Prokaryotic Laccase[J]. Science and Technology of Food Industry, 2023, 44(15): 451−462. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100306.

Research Progress and Application of Prokaryotic Laccase

More Information
  • Received Date: November 01, 2022
  • Available Online: June 05, 2023
  • A variety of phenolic and non-phenolic substrates can be oxidized by laccase using molecular oxygen as an auxiliary substrate. Due to the fact that laccase produces only water as a by-product, laccase is considered a "green tool enzyme" because it is environmentally friendly. Among the many industries in which laccase is used are sewage treatment, paper making, textiles, food, organic synthesis, biopharmaceuticals, detection, and ecological restoration. Compared to fungal laccase, prokaryotic laccase tends to have the following advantages: higher thermal stability and higher optimum reaction temperature, better suited to catalyse reactions under alkaline conditions, less sensitive and less dependent on inhibitors and metal ions, and more amenable to heterologous expression and protein engineering transformation. As a result, prokaryotic laccase has gained increasing attention in recent years. It describes in detail the origins, structure, catalytic process and physicochemical properties of prokaryotic laccase, its applications, and the recent research progress in this area over the past few years.
  • [1]
    YOSHIDA, HIKOROKURO. LXIII.—Chemistry of lacquer (Urushi). Part I. Communication from the chemical society of Tokio[J]. Journal of the Chemical Society, Transactions,1883,43:472−486. doi: 10.1039/CT8834300472
    [2]
    GUAN Z B, LUO Q, WANG H R, et al. Bacterial laccases: Promising biological green tools for industrial applications[J]. Cell Mol Life Sci,2018,75(19):3569−3592. doi: 10.1007/s00018-018-2883-z
    [3]
    KITTL R, MUEANGTOOM K, GONAUS C, et al. A chloride tolerant laccase from the plant pathogen ascomycete Botrytis aclada expressed at high levels in Pichia pastoris[J]. J Biotechnol,2012,157(2):304−314. doi: 10.1016/j.jbiotec.2011.11.021
    [4]
    GUAN Z B, SHUI Y, SONG C M, et al. Efficient secretory production of CotA-laccase and its application in the decolorization and detoxification of industrial textile wastewater[J]. Environ Sci Pollut Res Int,2015,22(12):9515−9523. doi: 10.1007/s11356-015-4426-6
    [5]
    FERNANDES T, SILVEIRA W, PASSOS F, et al. Laccases from actinobacteria—what we have and what to expect[J]. Advances in Microbiology,2014,4(6):285−296. doi: 10.4236/aim.2014.46035
    [6]
    PRINS A, KLEINSMIDT L, KHAN N, et al. The effect of mutations near the T1 copper site on the biochemical characteristics of the small laccase from Streptomyces coelicolor A3(2)[J]. Enzyme Microb Technol,2015,68:23−32. doi: 10.1016/j.enzmictec.2014.10.003
    [7]
    OSMA J F, TOCA-HERRERA J L, RODRíGUEZ-COUTO S. Uses of laccases in the food industry[J]. Enzyme Res,2010,2010:918761.
    [8]
    LEGERSKÁ B, CHMELOVÁ D, ONDREJOVIČ M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor[J]. J Biotechnol,2018,285:84−90. doi: 10.1016/j.jbiotec.2018.08.011
    [9]
    刘岩, 刘锐, 苏新国, 等. 漆酶的研究进展及其应用[J]. 安徽农学通报, 2016, (13): 25−27.

    LIU Yan, LIU Rui, SU Xinguo, et al. Research progress and application of laccase[J] Anhui Agricultural Bulletin, 2016, (13): 25−27.
    [10]
    VERMA A, SHIRKOT P. Purification and characterization of thermostable laccase from thermophilic Geobacillus thermocatenulatus MS5 and its application in removal of textiles dyes[J]. Journal of Biosciences,2014,2(8):479−485.
    [11]
    VIRK A P, SHARMA P, CAPALASH N. Use of laccase in pulp and paper industry[J]. Biotechnol Prog,2012,28(1):21−32. doi: 10.1002/btpr.727
    [12]
    ECE S, LAMBERTZ C, FISCHER R, et al. Heterologous expression of a Streptomyces cyaneus laccase for biomass modification applications[J]. AMB Express,2017,7(1):86. doi: 10.1186/s13568-017-0387-0
    [13]
    MAYER A M, STAPLES R C. Laccase: New functions for an old enzyme[J]. Phytochemistry,2002,60(6):551−565. doi: 10.1016/S0031-9422(02)00171-1
    [14]
    GIVAUDAN A, EFFOSSE A, FAURE D, et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum[J]. Fems Microbiology Letters,2010,108(2):205−210.
    [15]
    ALEXANDRE G, ZHULIN I B. Laccases are widespread in bacteria[J]. Trends Biotechnol,2000,18(2):41−42. doi: 10.1016/S0167-7799(99)01406-7
    [16]
    KUDDUS M, JOSEPH B, RAMTEKE P W. Production of laccase from newly isolated Pseudomonas putida and its application in bioremediation of synthetic dyes and industrial effluents[J]. Biocatalysis & Agricultural Biotechnology,2013,2(4):333−338.
    [17]
    MANDIC M, DJOKIC L, NIKOLAIVITS E, et al. Identification and characterization of new laccase biocatalysts from Pseudomonas species suitable for degradation of synthetic textile dyes[J]. Catalysts,2019,9(7):629. doi: 10.3390/catal9070629
    [18]
    SIDDIQUI, MASOOD, AHMED, et al. Identification of a novel copper-activated and halide-tolerant laccase in Geobacillus thermopakistaniensis[J]. Extremophiles Life Under Extreme Conditions,2017,21:563−571. doi: 10.1007/s00792-017-0925-3
    [19]
    WANG C L, ZHAO M, LI D B, et al. Isolation and characterization of a novel Bacillus subtilis WD23 exhibiting laccase activity from forest soil[J]. Afr J Biotechnol,2010,2010,9(34):5496−5502.
    [20]
    SOLANO F, GARCIA E, PEREZ D Y, et al. Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium[J]. Applied & Environmental Microbiology,1997,63(9):3499−3506.
    [21]
    BROWN N L, BARRETT S R, CAMAKARIS J, et al. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004[J]. Mol Microbiol,1995,17(6):1153−1166. doi: 10.1111/j.1365-2958.1995.mmi_17061153.x
    [22]
    ZENG J, LIN X, ZHANG J, et al. Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli[J]. Appl Microbiol Biotechnol,2011,89(6):1841−1849. doi: 10.1007/s00253-010-3009-1
    [23]
    ENDO K, HOSONO K, BEPPU T, et al. A novel extracytoplasmic phenol oxidase of Streptomyces: Its possible involvement in the onset of morphogenesis[J]. Microbiology (Reading), 2002, 148(Pt 6): 1767−1776.
    [24]
    ENDO K, HAYASHI Y, HIBI T, et al. Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus[J]. J Biochem,2003,133(5):671−677. doi: 10.1093/jb/mvg086
    [25]
    FANG Z, LI T, WANG Q, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability[J]. Applied Microbiology & Biotechnology,2011,89(4):1103−1110.
    [26]
    HENNE A, BRÜGGEMANN H, RAASCH C, et al. The genome sequence of the extreme thermophile Thermus thermophilus[J]. Nat Biotechnol,2004,22(5):547−553. doi: 10.1038/nbt956
    [27]
    MIYAZAKI K. A hyperthermophilic laccase from Thermus thermophilus HB27[J]. Extremophiles Life Under Extreme Conditions,2005,9(6):415−425. doi: 10.1007/s00792-005-0458-z
    [28]
    FERNANDES A T, SOARES C M, PEREIRA M M, et al. A robust metallo-oxidase from the Hyperthermophilic bacterium Aquifex aeolicus[J]. FEBS Journal,2010,274(11):2683−2694.
    [29]
    UTHANDI S, SAAD B, HUMBARD M A, et al. LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii[J]. Applied and Environmental Microbiology,2010,76(3):733−743. doi: 10.1128/AEM.01757-09
    [30]
    UTHANDI S, PRUNETTI L, VERA I, et al. Enhanced archaeal laccase production in recombinant Escherichia coli by modification of N-terminal propeptide and twin arginine translocation motifs[J]. J Ind Microbiol Biotechnol,2012,39(10):1523−1532. doi: 10.1007/s10295-012-1152-7
    [31]
    MOTAMEDI E, KAVOUSI K, MOTAHAR S, et al. Efficient removal of various textile dyes from wastewater by novel thermo-halotolerant laccase[J]. Bioresour Technol,2021(9):125468.
    [32]
    YANG Q H, ZHANG M L, ZHANG M M, et al. Characterization of a novel, cold-adapted, and thermostable laccase-like enzyme with high tolerance for organic solvents and salt and potent dye decolorization ability, derived from a marine metagenomic library[J]. Front Microbiol, 2018, 9: 2998.
    [33]
    ENGUITA F J, MARTINS L O, HENRIQUES A O, et al. Crystal structure of a bacterial endospore coat component[J]. Journal of Biological Chemistry,2003,278(21):19416−19425. doi: 10.1074/jbc.M301251200
    [34]
    ENGUITA F J, MARCAL D, MARTINS L O, et al. Substrate and dioxygen binding to the endospore coat laccase from Bacillus subtilis[J]. Journal of Biological Chemistry,2004,279(22):23472−23476. doi: 10.1074/jbc.M314000200
    [35]
    HULLO M F, MOSZER I, DANCHIN A, et al. CotA of Bacillus subtilis is a copper-dependent laccase[J]. Journal of Bacteriology,2001,183(18):5426−5430. doi: 10.1128/JB.183.18.5426-5430.2001
    [36]
    BENTO I, SILVA C S, CHEN Z, et al. Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer[J]. BMC Structural Biology,2010,10(1):28. doi: 10.1186/1472-6807-10-28
    [37]
    NAKAMURA K, GO N. Function and molecular evolution of multicopper blue proteins[J]. Cellular & Molecular Life Sciences Cmls,2005,62(18):2050−2066.
    [38]
    JANUSZ G, PAWLIK A, ŚWIDERSKA-BUREK U, et al. Laccase properties, physiological functions, and evolution[J]. Int J Mol Sci,2020,21(3):966. doi: 10.3390/ijms21030966
    [39]
    DWIVEDI U N, SINGH P, PANDEY V P, et al. Structure-function relationship among bacterial, fungal and plant laccases[J]. J Mol Catal B-Enzym,2011,68(2):117−128. doi: 10.1016/j.molcatb.2010.11.002
    [40]
    GUPTA N, LEE F S, FARINAS E T. Laboratory evolution of laccase for substrate specificity[J]. Journal of Molecular Catalysis B:Enzymatic,2010,62(3):230−234.
    [41]
    CHEN Y, LUO Q, ZHOU W, et al. Improving the catalytic efficiency of Bacillus pumilus CotA-laccase by site-directed mutagenesis[J]. Appl Microbiol Biotechnol,2017,101(5):1935−1944. doi: 10.1007/s00253-016-7962-1
    [42]
    XU K Z, WANG H R, WANG Y J, et al. Enhancement in catalytic activity of CotA-laccase from Bacillus pumilus W3 via site-directed mutagenesis[J]. J Biosci Bioeng,2020,129(4):405−411. doi: 10.1016/j.jbiosc.2019.09.020
    [43]
    MA H, XU K Z, WANG Y J, et al. Enhancing the decolorization activity of Bacillus pumilus W3 CotA-laccase to reactive black 5 by site-saturation mutagenesis[J]. Appl Microbiol Biotechnol,2020,104(21):9193−9204. doi: 10.1007/s00253-020-10897-1
    [44]
    HAKULINEN N, ROUVINEN J. Three-dimensional structures of laccases[J]. Cell Mol Life Sci,2015,72(5):857−868. doi: 10.1007/s00018-014-1827-5
    [45]
    LIU Z C, XIE T, ZHONG Q P, et al. Crystal structure of CotA laccase complexed with 2, 2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site[J]. Acta Crystallographica Section F Structural Biology Communications,2016,72(4):328−335. doi: 10.1107/S2053230X1600426X
    [46]
    JIMÉNEZ J, DOERR S, MARTÍNEZ-ROSELL G, et al. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks[J]. Bioinformatics,2017,33(19):3036−3042.
    [47]
    EBERHARDT J, SANTOS-MARTINS D, TILLACK A, et al. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and Python bindings[J]. J Chem Inf Model,2021,61(8):3891−3898. doi: 10.1021/acs.jcim.1c00203
    [48]
    SILVA C S, DURÃO P, FILLAT A, et al. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuni CGUG11284: Characterization of a metallo-oxidase†[J]. Metallomics,2011,4(1):37−47.
    [49]
    CHEN Z, DURÃO P, SILVA C S, et al. The role of Glu498 in the dioxygen reactivity of CotA-laccase from Bacillus subtilis[J]. Dalton Transactions,2010,39(11):2875−2882. doi: 10.1039/b922734b
    [50]
    GRAY H B, MALMSTRÖM B G, WILLIAMS R J P. Copper coordination in blue proteins[J]. JBIC Journal of Biological Inorganic Chemistry,2000,5(5):551−559. doi: 10.1007/s007750000146
    [51]
    MONZA E, LUCAS M F, CAMARERO S, et al. Insights into laccase engineering from molecular simulations: toward a binding-focused strategy[J]. The Journal of Physical Chemistry Letters,2015,6(8):1447−1453. doi: 10.1021/acs.jpclett.5b00225
    [52]
    DURÃO P, BENTO I, FERNANDES A T, et al. Perturbations of the T1 copper site in the CotA laccase from Bacillus subtilis: Structural, biochemical, enzymatic and stability studies[J]. JBIC Journal of Biological Inorganic Chemistry,2006,11(4):514. doi: 10.1007/s00775-006-0102-0
    [53]
    DURÃO P, CHEN Z, SILVA C S, et al. Proximal mutations at the type 1 copper site of CotA laccase: Spectroscopic, redox, kinetic and structural characterization of I494A and L386A mutants[J]. Biochem J,2008,412(2):339−346. doi: 10.1042/BJ20080166
    [54]
    KOSCHORRECK K, SCHMID R D, URLACHER V B. Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis[J]. BMC Biotechnol,2009,9(1):12. doi: 10.1186/1472-6750-9-12
    [55]
    BU T, YANG R, ZHANG Y, et al. Improving decolorization of dyes by laccase from Bacillus licheniformis by random and site-directed mutagenesis[J]. PeerJ,2020,8:e10267. doi: 10.7717/peerj.10267
    [56]
    XIE T, LIU Z, WANG G. Structural Insight into the allosteric coupling of cu1 site and trinuclear cu cluster in cota laccase[J]. Chembiochem,2018,19(14):1502−1506. doi: 10.1002/cbic.201800236
    [57]
    QUAN L, CHEN Y, XIA J, et al. Functional expression enhancement of Bacillus pumilus CotA-laccase mutant WLF through site-directed mutagenesis[J]. Enzyme & Microbial Technology,2018,109:11.
    [58]
    BRISSOS V, CHEN Z, MARTINS L O. The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase[J]. Dalton Trans,2012,41(20):6247−6255. doi: 10.1039/c2dt12067d
    [59]
    BENTO I, MARTINS L O, GATO LOPES G, et al. Dioxygen reduction by multi-copper oxidases; a structural perspective[J]. Dalton Trans,2005(21):3507−3513. doi: 10.1039/b504806k
    [60]
    GARZILLO A M, COLAO M C, BUONOCORE V, et al. Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus, and Trametes trogii[J]. Journal of Protein Chemistry,2001,20(3):191−201. doi: 10.1023/A:1010954812955
    [61]
    KALLIO J P, AUER S, JÄNIS J, et al. Structure-function studies of a Melanocarpus albomyces laccase suggest a pathway for oxidation of phenolic compounds[J]. J Mol Biol,2009,392(4):895−909. doi: 10.1016/j.jmb.2009.06.053
    [62]
    SHLEEV S, RUZGAS T. Transistor-like behavior of a fungal laccase[J]. Angew Chem Int Ed Engl,2008,47(38):7270−7274. doi: 10.1002/anie.200801364
    [63]
    SILVA C S, DAMAS J M, CHEN Z, et al. The role of Asp116 in the reductive cleavage of dioxygen to water in CotA laccase: Assistance during the proton-transfer mechanism[J]. Acta Crystallogr D Biol Crystallogr, 2012, 68(Pt 2): 186−193.
    [64]
    JONES S M, SOLOMON E I. Electron transfer and reaction mechanism of laccases[J]. Cellular and Molecular Life Sciences,2015,72(5):869−883. doi: 10.1007/s00018-014-1826-6
    [65]
    MOIN S F, OMAR M N. Laccase enzymes: Purification, structure to catalysis and tailoring[J]. Protein Pept Lett,2014,21(8):707−713.
    [66]
    BOURBONNAIS R, PAICE M G. Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation[J]. FEBS Letters,1990,267(1):99−102. doi: 10.1016/0014-5793(90)80298-W
    [67]
    郭梅, 蒲军, 路福平, 等. 白腐菌漆酶特性及其应用前景[J]. 天津农学院学报,2004(3):44−47. [GUO Mei, PU Jun, LU Fuping, et al. Characteristics and application prospects of white rot fungus laccase[J]. Journal of Tianjin Agricultural University,2004(3):44−47.

    GUO Mei, PU Jun, LU Fuping, et al. Characteristics and application prospects of white rot fungus laccase[J] Journal of Tianjin Agricultural University, 2004(3): 44−47.
    [68]
    KUDANGA T, LE ROES-HILL M. Laccase applications in biofuels production: Current status and future prospects[J]. Appl Microbiol Biotechnol,2014,98(15):6525−6542. doi: 10.1007/s00253-014-5810-8
    [69]
    RAM, CHANDRA, PANKAJ, et al. Properties of bacterial laccases and their application in bioremediation of industrial wastes[J]. Environmental Science Processes & Impacts,2015,17(2):326−342.
    [70]
    LU L, ZHAO M, WANG T N, et al. Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04[J]. Bioresour Technol,2012,115:35−40. doi: 10.1016/j.biortech.2011.07.111
    [71]
    XIAO Y, LI J, WU P, et al. An alkaline thermostable laccase from termite gut associated strain of Bacillus stratosphericus[J]. Int J Biol Macromol,2021,179:270−278. doi: 10.1016/j.ijbiomac.2021.02.205
    [72]
    SHERIF M, WAUNG D, KORBECI B, et al. Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis[J]. Microb Biotechnol,2013,6(5):588−597. doi: 10.1111/1751-7915.12068
    [73]
    SONICA S, PRINCE S, SHILPA S, et al. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4[J]. PLoS One,2014,9(5):e96951. doi: 10.1371/journal.pone.0096951
    [74]
    GUAN Z B, ZHANG N, SONG C M, et al. Molecular cloning, characterization, and dye-decolorizing ability of a temperature- and pH-stable laccase from Bacillus subtilis X1[J]. Appl Biochem Biotechnol,2014,172(3):1147−1157. doi: 10.1007/s12010-013-0614-3
    [75]
    SINGH, G. , CAPALASH, et al. A pH-stable laccase from Alkali-tolerant γ-proteobacterium JB: Purification, characterization and indigo carmine degradation[J]. Enzyme Microb Technol,2007,41:794−799. doi: 10.1016/j.enzmictec.2007.07.001
    [76]
    OLAJUYIGBE F M, FATOKUN C O. Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix caris CPF-05[J]. Int J Biol Macromol, 2017, 94(Pt A): 535−543.
    [77]
    JAVADZADEH S G, ASOODEH A. A novel textile dye degrading extracellular laccase from symbiotic bacterium of Bacillus sp. CF96 isolated from gut termite (Anacanthotermes)[J]. Int J Biol Macromol,2020,145:355−363. doi: 10.1016/j.ijbiomac.2019.12.205
    [78]
    ZHANG C, ZHANG S, DIAO H, et al. Purification and characterization of a temperature- and pH-stable laccase from the spores of Bacillus vallismortis fmb-103 and its application in the degradation of malachite green[J]. J Agric Food Chem,2013,61(23):5468−5473. doi: 10.1021/jf4010498
    [79]
    吴怡, 马鸿飞, 曹永佳, 等. 真菌漆酶的性质、生产、纯化及固定化研究进展[J]. 生物技术通报,2019,35(9):10. [WU Yi, MA Hongfei, CAO Yongjia, et al. Research progress on properties, production, purification and immobilization of fungal laccase[J]. Biotechnology Bulletin,2019,35(9):10.

    WU Yi, MA Hongfei, CAO Yongjia, et al Research progress on properties, production, purification and immobilization of fungal laccase[J] Biotechnology Bulletin, 2019, 35 (9): 10.
    [80]
    SIROOSI M, AMOOZEGAR M A, KHAJEH K. Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT[J]. Journal of Molecular Catalysis B Enzymatic,2016,134:89−97. doi: 10.1016/j.molcatb.2016.10.001
    [81]
    马小建. 大肠杆菌来源的漆酶CueO在毕赤酵母GS115中的高效表达及在染料脱色中的应用研究[D]. 武汉: 湖北大学, 2017.

    MA Xiaojian. High expression of laccase CueO from Escherichia coli in Pichia pastoris GS115 and its application in dye decolorization[D]. Wuhan: Hubei University, 2017.
    [82]
    CZYZOWSKA A, KLEWICKA E, POGORZELSKI E, et al. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb[J]. Journal of Food Composition and Analysis, 2015: 62−68.
    [83]
    胡周月, 钱磊, 张志军, 等. 漆酶在食品工业及其他领域上的应用进展[J]. 天津农学院学报,2019,26(3):4. [HU Zhouyue, QIAN Lei, ZHANG Zhijun, et al. Application progress of laccase in food industry and other fields[J]. Journal of Tianjin Agricultural University,2019,26(3):4.

    HU Zhouyue, QIAN Lei, ZHANG Zhijun, et al Application progress of laccase in food industry and other fields[J] Journal of Tianjin Agricultural University, 2019, 26 (3): 4.
    [84]
    CONRAD L S, SPONHOLZ W R, BERKER O. Treatment of cork with a phenol oxidizing enzyme: US, US09/296439[P]. 2000-11-28.
    [85]
    ROSANA C M, GLÁUCIA M P, NELSON D, et al. Potential applications of laccase in the food industry[J]. Trends in Food Science & Technology,2002,13:205−216.
    [86]
    PEZZELLA C, GUARINO L, PISCITELLI A. How to enjoy laccases[J]. Cellular and Molecular Life Sciences,2015,72(5):923−940. doi: 10.1007/s00018-014-1823-9
    [87]
    郭盼, 马惠玲, 罗耀红, 等. 漆酶对苹果酚类物质的催化特性[J]. 西北农林科技大学学报(自然科学版),2011,39(3):103−112. [GUO Pan, MA Huiling, LUO Yaohong, et al. Catalytic properties of laccase on apple phenols[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition),2011,39(3):103−112.

    GUO Pan, MA Huiling, LUO Yaohong, et al Catalytic properties of laccase on apple phenols[J] Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2011, 39 (3): 103−112.
    [88]
    乔晓兰, 李文钊, 毛磊红, 等. 漆酶在浓缩苹果汁生产中的应用[J]. 农业机械,2012(9):102−105. [QIAO Xiaolan, LI Wenzhao, MAO Leihong, et al. Application of laccase in the production of concentrated apple juice[J]. Agricultural Machinery,2012(9):102−105.

    QIAO Xiaolan, LI Wenzhao, MAO Leihong, et al Application of laccase in the production of concentrated apple juice[J] Agricultural Machinery, 2012, 000(6): 102−105.
    [89]
    HUANG H, LEI L, BAI J, et al. Efficient elimination and detection of phenolic compounds in juice using laccase mimicking nanozymes[J]. Chinese Journal of Chemical Engineering,2020,29:167−175.
    [90]
    BRIJWANI K, RIGDON A, VADLANI P V. Fungal laccases: production, function, and applications in food processing[J]. Enzyme Research, 2010, 149748.
    [91]
    UPADHYAY P, SHRIVASTAVA R, AGRAWAL P K. Bioprospecting and biotechnological applications of fungal laccase[J]. 3 Biotech,2016,6(1):15. doi: 10.1007/s13205-015-0316-3
    [92]
    MOKOONLALL A, SYKORA L, PFANNSTIEL J, et al. A feasibility study on the application of a laccase-mediator system in stirred yoghurt at the pilot scale[J]. Food Hydrocolloids,2016,60:119−127. doi: 10.1016/j.foodhyd.2016.03.027
    [93]
    SONDHI S, SHARMA P, GEORGE N, et al. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp[J]. 3 Biotech,2015,5(2):175−185. doi: 10.1007/s13205-014-0207-z
    [94]
    VIRK A P, PURI M, GUPTA V, et al. Combined enzymatic and physical deinking methodology for efficient eco-friendly recycling of old newsprint[J]. PLoS One,2013(8):e72346.
    [95]
    郑志强. 耐热性细菌漆酶的高效表达及其在纸浆生物漂白中的应用[D]. 无锡: 江南大学, 2015.

    ZHENG Zhiqiang. High expression of thermostable bacterial laccase and its application in pulp biobleaching[D]. Wuxi: Jiangnan University, 2015.
    [96]
    张应玖, 杨雪, 金兰娜. 一种来源于枯草杆菌ZXN4的细菌漆酶基因, 细菌漆酶及其应用: 中国, CN106434707A[P]. 2019-08-06.

    ZHANG Yingjiu, YANG Xue, JIN Lanna. A bacterial laccase gene from Bacillus subtilis ZXN4, bacterial laccase and its application: China, CN106434707A[P]. 2019-08-06.
    [97]
    WANG T N, ZHAO M. A simple strategy for extracellular production of CotA laccase in Escherichia coli and decolorization of simulated textile effluent by recombinant laccase[J]. Applied Microbiology and Biotechnology,2017,101(2):685−696. doi: 10.1007/s00253-016-7897-6
    [98]
    PANWAR V, SHEIKH J N, DUTTA T. Sustainable denim bleaching by a novel thermostable bacterial laccase[J]. Applied Biochemistry and Biotechnology, 2020: 1−17.
    [99]
    ZILLE A, TZANOV T, GÜBITZ G M, et al. Immobilized laccase for decolourization of reactive black 5 dyeing effluent[J]. Biotechnol Lett,2003,25(17):1473−1477. doi: 10.1023/A:1025032323517
    [100]
    LIU J, CHEN J, ZUO K, et al. Chemically induced oxidative stress improved bacterial laccase-mediated degradation and detoxification of the synthetic dyes[J]. Ecotoxicol Environ Saf,2021,226:112823. doi: 10.1016/j.ecoenv.2021.112823
    [101]
    刘锐, 张晓柔, 陈欣强, 等. 利用细菌漆酶对有机磷农药的降解方法: 中国, CN201911390161.5[P]. 2022-06-03.

    LIU Rui, ZHANG Xiaorou, CHEN Xinqiang, et al Degradation of organophosphorus pesticides by bacterial laccase: China, CN201911390161.5[P]. 2022-06-03.
    [102]
    CHENG C M, PATEL A K, SINGHANIA R R, et al. Heterologous expression of bacterial CotA-laccase, characterization and its application for biodegradation of malachite green[J]. Bioresour Technol,2021,340:125708. doi: 10.1016/j.biortech.2021.125708
    [103]
    MURUGESAN R, VEMBU B. Production of extracellular laccase from the newly isolated Bacillus sp. PK4[J]. African Journal of Biotechnology,2016,15(34):1813−1826. doi: 10.5897/AJB2016.15509
    [104]
    MENAKA S, LONE T A, LONE R A. Cloning of laccase gene from a newly isolated 2, 4-dichlorophenol degrading Bacillus subtilis from dyeing industry sites[J]. 2015, 15 (8): 1602−1608.
    [105]
    RODRíGUEZ-DELGADO M, ALEMáN-NAVA G, RODRíGUEZ-DELGADO J, et al. Laccase-based biosensors for detection of phenolic compounds[J]. TrAC Trends in Analytical Chemistry,2015,74:21−45. doi: 10.1016/j.trac.2015.05.008
    [106]
    DI FUSCO M, TORTOLINI C, DERIU D, et al. Laccase-based biosensor for the determination of polyphenol index in wine[J]. Talanta,2010,81(1-2):235−240. doi: 10.1016/j.talanta.2009.11.063
    [107]
    CHAWLA S, RAWAL R, KUMAR D, et al. Amperometric determination of total phenolic content in wine by laccase immobilized onto silver nanoparticles/zinc oxide nanoparticles modified gold electrode[J]. Analytical Biochemistry,2012,430(1):16−23. doi: 10.1016/j.ab.2012.07.025
  • Cited by

    Periodical cited type(10)

    1. 毕泗伟. 食品安全监督抽检在食品监管中的作用. 食品安全导刊. 2025(05): 36-38 .
    2. 刘绮琪,陈坤才,许静琳,黄德演,余威,张维蔚. 基于多源数据的肉制品食品安全风险评价研究. 职业与健康. 2024(09): 1158-1166 .
    3. 杨瑞,赵豪豪,马海军. 食品安全抽样技术发展与提升. 食品安全质量检测学报. 2024(14): 293-298 .
    4. 杨子恩. 食品安全抽检数据质量提升策略研究. 食品安全导刊. 2023(04): 72-76 .
    5. 曹东丽,翟雨佳,杨栩,刘园,徐慧静. 冷冻饮品网络销售发展现状及对策研究. 质量安全与检验检测. 2023(01): 53-57 .
    6. 覃思森. 食品安全监督抽检的效能提升与发展建议. 食品安全导刊. 2023(30): 50-53 .
    7. 高超. 食品抽检重复性问题探析. 现代食品. 2023(17): 165-168 .
    8. 蓝小飞,谢琳,张丽娟,陈婷,施文婷. 食品安全指数法评价嘉兴市售水产品污染物残留风险. 湖北农业科学. 2023(S1): 200-204 .
    9. 郝相帅. 食品抽样环节存在的问题及其对策. 食品安全导刊. 2023(29): 179-181+185 .
    10. 范晓燕,张晓佳,易博春,靳亚卫,王艳英. 县域餐饮环节食品安全监管问题及提升策略. 食品安全导刊. 2023(35): 20-23 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (188) PDF downloads (42) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return