MA Tingting, MA Rui, SHEN Bing, et al. Indentification of Fungal Community and Changes of Metabolite in Mildew Liupao Tea[J]. Science and Technology of Food Industry, 2023, 44(8): 187−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100218.
Citation: MA Tingting, MA Rui, SHEN Bing, et al. Indentification of Fungal Community and Changes of Metabolite in Mildew Liupao Tea[J]. Science and Technology of Food Industry, 2023, 44(8): 187−196. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100218.

Indentification of Fungal Community and Changes of Metabolite in Mildew Liupao Tea

More Information
  • Received Date: October 23, 2022
  • Available Online: February 17, 2023
  • In order to understand the changes of fungal community and metabolites in mildew Liupao tea, the fungal diversity of mildew Liupao tea samples (GGZ) and normal Liupao tea samples stored in bamboo basket (BDL) were analyzed by Illumina high-throughput sequencing technology, and ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the metabolites in these samples. Further, pathway enrichment analysis was performed on the significantly differential metabolites, and the correlation between the differential metabolites and the differential microorganisms was calculated. The results showed that the most abundant fungi in mildew Liupao tea were Ascomycota and Basidiomycota in phylum level, Aspergillus and Wallemia in genus level. Aspergillus and Penicillium belonging to Ascomycota were more abundant in BDL. Two of the dominant fungi related to mildew in Liupao tea, A. Ruber and W. sebi, showed significantly (P<0.05) higher abundance in GGZ than in BDL. In addition, higher contents of flavonoids along with the changing amino acids metabolism and down-regultated caffeine metabolism was observed in mildew Liupao tea. In mildew Liupao tea, the content of 2-hydroxy-isocaproic acid with certain cytotoxicity and genotoxicity was up-regulated and negatively correlated with reduced abundance of Penicillium. These data unveiled that A. ruber, W. sebi and 2-hydroxyisocaproic acid were potential risk factors in food safety assessment of Liupao tea, and the changes of flavonoid content, amino acid metabolism and caffeine metabolism in mildew Liupao tea might be related to quality changes.
  • [1]
    石荣强, 温立香, 曾玉凤, 等. 六堡茶品质研究进展[J]. 中国茶叶加工,2020(2):43−47. [SHI R, WEN L, CENG Y, et al. Research progress on quality of Liupao tea[J]. China Tea Processing,2020(2):43−47.
    [2]
    全国茶叶标准化技术委员会. GB/T 32719.4-2016黑茶. 第4部分: 六堡茶[S]. 北京: 中国标准出版社, 2016

    National Tea Standardization Technical Committee. GB/T 32719.4-2016 Dark tea. Part 4: Liupu tea [S]. Beijing: Standards Press of China, 2016.
    [3]
    马士成, 杨麦. 广西地理标志产品六堡茶[M]. 北京: 中国工商出版社, 2019: 17−19

    MA S, YANG M. Guangxi geographical indication product Liubao tea[M]. Beijing: China Industry and Commerce Press, 2019: 17−19.
    [4]
    ZHU M Z, LI N, ZHOU F, et al. Microbial bioconversion of the chemical components in dark tea[J]. Food Chemistry,2020:312.
    [5]
    谢雨, 文兆明, 杜超年, 等. 略论六堡茶后发酵工艺[J]. 广西农学报,2015,30(3):41−42,46. [XIE Y, WEN Z, DU C, et al. Discussion on post-fermentation process of Liupu tea[J]. Journal of Guangxi Agriculture,2015,30(3):41−42,46.
    [6]
    SEDOVA I, KISELEVA M, TUTLYAN V. Mycotoxins in tea: Occurrence, methods of determination and risk evaluation[J]. Toxins,2018,10(11):444−462. doi: 10.3390/toxins10110444
    [7]
    李静榕, 毛世红, 覃观凤, 等. 茶叶中真菌毒素风险评估及防控研究进展[J]. 食品安全质量检测学报,2022,13(19):6354−6360. [LI J, MAO S, QIN G, et al. Research progress in risk assessment and prevention control of mycotoxins in tea[J]. Journal of Food Safety and Quality,2022,13(19):6354−6360.
    [8]
    ERDOGAN A, SERT S. Mycotoxin-forming ability of two Penicillium roqueforti strains in blue moldy tulum cheese ripened at various temperatures[J]. J Food Prot,2004,67(3):533. doi: 10.4315/0362-028X-67.3.533
    [9]
    胥伟, 赵仁亮, 姜依何, 等. 湖南黑毛茶等温吸湿模型建立及霉变安全性研究[J]. 食品科学,2018,39(7):27−32. [XU W, ZHAO R, JIANG Y, et al. Modeling moisture absorption isotherms of hunan raw dark tea and evaluating its mildew degree[J]. Food Science,2018,39(7):27−32. doi: 10.7506/spkx1002-6630-201807005
    [10]
    陈建玲, 李文学, 杨光宇, 等. 广州某茶叶市场普洱茶中多种生物毒素污染现状调查[J]. 癌变畸变突变,2011,23(1):68−71. [CHEN J, LI W, YANG G, et al. Biological contamination of Puer tea in a Guangzhou tea market[J]. Carcinogenesis, Teratogenesis & Mutagenesi,2011,23(1):68−71.
    [11]
    胥伟, 姜依何, 吴丹, 等. 高通量测序研究霉变黑毛茶的真菌多样性[J]. 茶叶科学,2017,37(5):483−492. [XU W, JIANG Y, WU D, et al. RNA sequencing analysis of fungi community diversity in mildew raw dark tea[J]. Journal of Tea Science,2017,37(5):483−492. doi: 10.3969/j.issn.1000-369X.2017.05.007
    [12]
    梁剑锋, 李亚, 宾月景, 等. 梧州六堡茶中真菌多样性分析及真菌毒素残留量的测定[J]. 食品研究与开发,2022,43(15):195−200. [LIANG J, LI Y, BIN Y, et al. Fungal diversity and mycotoxin residues in Wuzhou Liupao tea[J]. Food Research and Development,2022,43(15):195−200.
    [13]
    杨娟, 陈欣怡, 丁子元, 等. 六堡茶真菌多样性分析和优势真菌的分离筛选[J]. 茶叶通讯,2022,49(3):353−362. [YANG J, CHEN X, DING Z, et al. Diversity analysis and screening of dominant fungi in Liupao tea[J]. Journal of Tea Communication,2022,49(3):353−362.
    [14]
    陈庆金, 黄丽, 滕建文, 等. 基于Miseq测序分析六堡茶陈化初期真菌多样性[J]. 食品科技,2015,40(8):67−71. [CHEN Q, HUANG L, TENG J, et al. Fungal community of Liupao tea during the early aging process by high-throughput sequencing technologies with Miseq[J]. Food Science and Technology,2015,40(8):67−71.
    [15]
    陈然, 郝彬秀, 田海霞, 等. 六堡茶真菌分布浅析及金花菌筛选鉴定[J]. 食品科技,2016,41(4):19−23. [CHEN R, HAO B, TIAN H, et al. Distribution of fungal strains and molecular identification of Eurotium cristatum in Liupao tea[J]. Food Science and Technology,2016,41(4):19−23. doi: 10.13684/j.cnki.spkj.2016.04.004
    [16]
    杨雅焯, 汪迎, 李辉, 等. 广西六堡茶和重庆沱茶的微生物多样性分析[J]. 茶叶学报,2019,60(3):93−98. [YANG Y, WANG Y, LI H, et al. Microbial diversity of guangxi Liubao and Chongqing bowl teas[J]. Acta Tea Sinica,2019,60(3):93−98.
    [17]
    杜金杰, 刘晓纯, 吴新慧, 等. 六堡茶微生物多样性研究进展[J]. 广东茶业,2021(4):2−8. [DU J, LIU X, WU X, et al. Research progress on microbial diversity of Liubao tea[J]. Guangdong Tea,2021(4):2−8.
    [18]
    XUE F, LIU T. DNA sequence and community structure diversity of multi-year soil fungi in Grape of Xinjiang[J]. Scientific Reports,2021,11(1):16367. doi: 10.1038/s41598-021-95854-2
    [19]
    MAGOČ T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics,2011,27(21):2957−2963. doi: 10.1093/bioinformatics/btr507
    [20]
    HAAS B J, GEVERS D, EARL A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome Research,2011,21(3):494−504. doi: 10.1101/gr.112730.110
    [21]
    MIAO S, ZHAO C, ZHU J, et al. Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology and inflammatory cytokine gene expression in northern snakehead[J]. Scientific Reports,2018,8(1):113. doi: 10.1038/s41598-017-18430-7
    [22]
    CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581. doi: 10.1038/nmeth.3869
    [23]
    BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome,2018,6(1):90. doi: 10.1186/s40168-018-0470-z
    [24]
    BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology,2019,37(8):852−857. doi: 10.1038/s41587-019-0209-9
    [25]
    LOZUPONE C, LLADSER M E, KNIGHTS D, et al. UniFrac: an effective distance metric for microbial community comparison[J]. The ISME Journal,2011,5(2):169−172. doi: 10.1038/ismej.2010.133
    [26]
    HARRISON K, CURTIN C. Microbial composition of scoby starter cultures used by commercial kombucha brewers in North America[J]. Microorganisms,2021,9(5):1060. doi: 10.3390/microorganisms9051060
    [27]
    MINCHIN P R. An evaluation of the relative robustness of techniques for ecological ordination[J]. Vegetatio,1987,69(1/3):89−107.
    [28]
    SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology,2011,12(6):R60. doi: 10.1186/gb-2011-12-6-r60
    [29]
    WHITE J R, NAGARAJAN N, POP M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples[J]. PLoS Computational Biology,2009,5(4):e1000352. doi: 10.1371/journal.pcbi.1000352
    [30]
    CHONG J, XIA J. MetaboAnalystR: An R package for flexible and reproducible analysis of metabolomics data[J]. Bioinformatics,2018,34(24):4313−4314. doi: 10.1093/bioinformatics/bty528
    [31]
    THÉVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and opls statistical analyses[J]. Journal of Proteome Research,2015,14(8):3322−3335. doi: 10.1021/acs.jproteome.5b00354
    [32]
    ZHOU Y, SHAO L, ZHU J, et al. Comparative analysis of tuberous root metabolites between cultivated and wild varieties of Rehmannia glutinosa by widely targeted metabolomics[J]. Scientific Reports,2021,11(1):11460. doi: 10.1038/s41598-021-90961-6
    [33]
    CHEN Y, HUANG R, DING J, et al. Multiple myeloma acquires resistance to EGFR inhibitor via induction of pentose phosphate pathway[J]. Scientific Reports,2015,5:9925. doi: 10.1038/srep09925
    [34]
    LU K, ABO R P, SCHLIEPER K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: An integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives,2014,122(3):284−291. doi: 10.1289/ehp.1307429
    [35]
    JOLLIFFE I T. Principal component analysis[J]. Journal of Marketing Research,1986,87(100):513.
    [36]
    LIGUORI G, LAMAS B, RICHARD M L, et al. Fungal dysbiosis in mucosa-associated microbiota of crohn's disease patients[J]. Journal of Crohn's and Colitis,2016,10(3):296−305. doi: 10.1093/ecco-jcc/jjv209
    [37]
    CEVASCO M. 1.11-Microbial eukaryotic diversity and function within the human gut microbiota[J]. Comprehensive Gut Microbiota,2022:127−142.
    [38]
    ZALAR P, SYBREN DE, HOOG G, et al. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.)[J]. Antonie Van Leeuwenhoek,2005,87(4):311−328. doi: 10.1007/s10482-004-6783-x
    [39]
    ZAJC J, GUNDE-CIMERMAN N. The genus Wallemia—from contamination of food to health threat[J]. Microorganisms,2018,6(2):46. doi: 10.3390/microorganisms6020046
    [40]
    KOZAKIEWICZ Z. Aspergillus species on stored products[J]. Mycological Papers,1989,161(3).
    [41]
    LEITAO J, LE BARS J, BAILLY JR. Production of aflatoxin B1 by Aspergillus ruber THOM and CHURCH[J]. Mycopathologia,1989,108(2):135−138. doi: 10.1007/BF00436064
    [42]
    CHEN AJ, HUBKA V, FRISVAD JC, et al. Polyphasic taxonomy of Aspergillus section Aspergillus (formerly Eurotium), and its occurrence in indoor environments and food[J]. Studies in Mycology,2017,88:37−135. doi: 10.1016/j.simyco.2017.07.001
    [43]
    宋琬晨, 郭婉霜, 郑伟娟. 大黄素型蒽醌类化合物肝肾毒性的分子机制研究[J]. 药物生物技术,2020,27(2):149−153. [SONG W, GUO W, ZHENG W. Study on the molecular mechanism of hepatorenal toxicity of emodin-type anthraquinone compounds[J]. Pharmaceutical Biotechnology,2020,27(2):149−153.
    [44]
    萧惠来. 欧洲药品管理局(EMA)对大黄药用的评估报告及有关启示[J]. 药物评价研究,2021,44(1):45−55. [XIAO H. EMA assessment report on medical rhubarb and its enlightenment[J]. Drug Evaluation Research,2021,44(1):45−55.
    [45]
    汪祺, 杨建波, 文海若, 等. 大黄素-大黄素甲醚型二蒽酮化合物安全性研究[J]. 中国现代中药,2022,24(8):1425−1430. [WANG Q, YANG J, WEN R, et al. Safety of emodin-emodin physcion dianthrones[J]. Modern Chinese Medicine,2022,24(8):1425−1430. doi: 10.13313/j.issn.1673-4890.20220317004
    [46]
    欧惠算, 邓旭铭, 张灵枝, 等. 汽蒸前后六堡茶中优势微生物的分离鉴定[J]. 广东农业科学,2017,44(2):129−135,193. [OU H, DENG X, ZHANG L, et al. Isolation and identification of dominant microorganisms of Liupao tea before and after steaming[J]. Guangdong Agricultural Sciences,2017,44(2):129−135,193.
    [47]
    王茹茹, 肖孟超, 李大祥, 等. 黑茶品质特征及其健康功效研究进展[J]. 茶叶科学,2018,38(2):113−124. [WANG R, XIAO M, LI D, et al. Recent advance on quality characteristics and health effects of dark tea[J]. Journal of Tea Science,2018,38(2):113−124. doi: 10.3969/j.issn.1000-369X.2018.02.001
    [48]
    SELIS D, PANDE Y, SMOCZER C, et al. Cytotoxicity and genotoxicity of a new intracanal medicament, 2-hydroxyisocaproic acid-an in vitro study[J]. J Endod,2019,45(5):578−583. doi: 10.1016/j.joen.2019.01.012
  • Cited by

    Periodical cited type(4)

    1. 刘丽辰,张志昌,雷桂英,侯彦双. 梵净山区域内黑茶中冠突散囊菌的分离和利用. 南方农业. 2025(01): 8-11+17 .
    2. 兰天,段国珍,祁有朝,樊光辉,白春燕,张叶德. 红果枸杞和黄果枸杞广泛靶向代谢组学分析. 食品工业科技. 2024(24): 9-20 . 本站查看
    3. 张修宝,龚雪,王翔,刘源,杨勇胜. 茶叶微生物污染研究进展. 贵茶. 2023(02): 4-13 .
    4. 马薇薇,郑晓娇,刘荣艳,罗岳伟,郭瑜,王晓闻. 加速溶剂萃取法提取小米多酚及其组分分析. 食品安全质量检测学报. 2023(20): 279-286 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (205) PDF downloads (21) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return