YANG Qian, HE Shuting, MENG Dong, et al. Composition and Immune Regulatory Effect of Polysaccharides Extracted from Different Parts of Urtica macrorrhiza Hand.-Mazz. DOI: 10.13386/j.issn1002-0306.2022100210
Citation: YANG Qian, HE Shuting, MENG Dong, et al. Composition and Immune Regulatory Effect of Polysaccharides Extracted from Different Parts of Urtica macrorrhiza Hand.-Mazz. DOI: 10.13386/j.issn1002-0306.2022100210

Composition and Immune Regulatory Effect of Polysaccharides Extracted from Different Parts of Urtica macrorrhiza Hand.-Mazz.

More Information
  • Received Date: October 20, 2022
  • Available Online: June 05, 2023
  • Objective: To study the content and chemical composition of crude polysaccharides from different parts of Urtica macrorrhiza Hand.-Mazz. and evaluate their regulatory effect on macrophage. Methods: The crude polysaccharides from the roots, stems and leaves of Urtica macrorrhiza Hand.-Mazz. were prepared by hot water extraction and ethanol fractional precipitation. Their molecular weight and monosaccharide composition of the polysaccharides were analyzed by high performance liquid chromatography (HPLC) and their structural characteristics were identified by full-wavelength scanning and infrared spectroscopy. The cytotoxicity of these polysaccharides was evaluated by MTT assay. The effect of polysaccharides on the phagocytic activity of macrophages was investigated by neutral red staining and their effect on the secretion of NO and TNF-α from macrophage was studied by Griess method and ELISA, respectively. Results: Six kinds of crude polysaccharides were extracted from leaves (UML40, UML60), stems (UMS40, UMS60) and roots (UMR40, UMR60), of which the highest yield of 4.62% was obtained from leaves, 77.92% from UML40, 0.69% from stems and 1.13% from roots. The average heavy average molecular weight of each crude polysaccharide ranged from 2.11 kDa to 802.21 kDa and consisted mainly composed of D-glucose, D-galactose, D-arabinose and D-galacturonic acid, while the molar ratio of monosaccharide components was various in different parts. In addition, the immune activities of polysaccharides from different parts with different molecular weights were obviously different, UML40, UMS40 and UMR40 could significantly activate macrophages, promote their phagocytosis activity, and increase their secretion of NO and TNF-α (P<0.05). Although UMR60 had no obvious effect on macrophage phagocytosis, it could significantly promote cytokine secretion (P<0.001). Whereas, UML60 showed higher cytotoxicity and lower activity, and UMS60 did not showed activity in activating macrophages. Conclusion: Polysaccharides from different parts of Urtica macrorrhiza Hand.-Mazz. varied in monosaccharide composition and immunomodulatory activity, thus quality control would be important for the research and development of these polysaccharides.
  • [1]
    MZID M, BEN K S, BARDAA S, et al. Chemical composition, phytochemical constituents, antioxidant and anti-inflammatory activities of Urtica urens L. leaves[J]. Archives of Physiology and Biochemistry,2017,123(2):93−104. doi: 10.1080/13813455.2016.1255899
    [2]
    TAHERI Y, QUISPE C, HERRERA-BRAVO J, et al. Urtica dioica-derived phytochemicals for pharmacological and therapeutic applications[J]. Evidence-based Complementary and Alternative Medicine,2022,2022:4024331.
    [3]
    KARAMI A, SHEIKHSOLEIMANI M, MEMARZADEH R, et al. Urtica dioica root extract on clinical and biochemical parameters in patients with benign prostatic hyperplasia, randomized controlled trial[J]. Pakistan Journal of Biological Sciences: PJBS,2020,23:1338−1344. doi: 10.3923/pjbs.2020.1338.1344
    [4]
    OTLES S, YALCIN B. Phenolic compounds analysis of root, stalk, and leaves of nettle[J]. The Scientific World Journal,2012,2012:12.
    [5]
    ĐUROVIĆ S, PAVLIĆ B, ŠORGIĆ S, et al. Chemical composition of stinging nettle leaves obtained by different analytical approaches[J]. Journal of Functional Foods,2017,32:18−26. doi: 10.1016/j.jff.2017.02.019
    [6]
    GRAUSO L, EMRICK S, BONANOMI G, et al. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis[J]. Phytochemical Analysis,2019,30(5):535−546. doi: 10.1002/pca.2845
    [7]
    PAULAUSKIENĖ A, TARASEVIČIENĖ Ž, LAUKAGALIS V. Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.)[J]. Plants,2021,10(4):686. doi: 10.3390/plants10040686
    [8]
    WANG M, ZHANG Y, ZHANG H, et al. The active glycosides from Urtica fissa rhizome decoction[J]. Journal of natural medicines,2018,72(2):557−562. doi: 10.1007/s11418-018-1172-3
    [9]
    TANG M, CHENG L, LIU Y, et al. Plant polysaccharides modulate immune function via the gut microbiome and may have potential in COVID-19 therapy[J]. Molecules,2022,27(9):2773. doi: 10.3390/molecules27092773
    [10]
    GUO R, CHEN M, DING Y, et al. Polysaccharides as potential anti-tumor biomacromolecules-A review[J]. Frontiers in nutrition,2022,9:838179. doi: 10.3389/fnut.2022.838179
    [11]
    HU Y, WANG S, SHI Z, et al. Purification, characterization, and antioxidant activity of polysaccharides from Okara[J]. Journal of Food Processing and Preservation,2022,46(3):e16411.
    [12]
    CLAUS-DESBONNET H, NIKLY E, NALBANTOVA V, et al. Polysaccharides and their derivatives as potential antiviral molecules[J]. Viruses,2022,14(2):426. doi: 10.3390/v14020426
    [13]
    CHEN X C, HE S, LI Y X, et al. Inhibition of spontaneous canine benign prostatic hyperplasia by an Urtica fissa polysaccharide fraction[J]. Planta medica,2015,81(1):10−14.
    [14]
    WANG Z J, LI Y H, WANG C J, et al. Oral administration of Urtica macrorrhiza Hand. -Mazz. polysaccharides to protect against cyclophosphamide-induced intestinal immunosuppression[J]. Experimental and Therapeutic Medicine,2019,18(3):2178−2186.
    [15]
    QU M H, WANG C J, LIANG Y Q, et al. Urtica macrorrhiza Hand-Mazz polysaccharides induce cord blood monocytes into mature dendritic cells (DCs) and its effect on surface molecules expression of DCs[J]. Natural Product Research and Development,2016,28(5):745−748.
    [16]
    LI Y H, LIANG Y Q, WANG C J, et al. Effect of Urtica macrorrhiza Hand-Mazz polysaccharide on the phenotype of intestinal paired node cells and TLR4 in cyclophosphamide-induced immunosuppressed mice[J]. Chinese Traditional Patent Medicine,2017,39(6):1272−1276.
    [17]
    LI G, JU Y, WEN Y, et al. Screening of codonopsis radix polysaccharides with different molecular weights and evaluation of their immunomodulatory activity in vitro and in vivo[J]. Molecules,2022,27(17):5454. doi: 10.3390/molecules27175454
    [18]
    TIAN H, LIANG Y, LIU G, et al. Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice[J]. International Journal of Biological Macromolecules,2021,182:595−611. doi: 10.1016/j.ijbiomac.2021.03.144
    [19]
    TAO S, REN Z, YANG Z, et al. Effects of different molecular weight polysaccharides from Dendrobium officinale Kimura & Migo on human colorectal cancer and transcriptome analysis of differentially expressed genes[J]. Frontiers in Pharmacology,2021,12:704486. doi: 10.3389/fphar.2021.704486
    [20]
    DRIRA M, HENTATI F, BABICH O, et al. Bioactive carbohydrate polymers—between myth and reality[J]. Molecules,2021,26(23):7068. doi: 10.3390/molecules26237068
    [21]
    FALERI C, XU X, MARERI L, et al. Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers[J]. Protoplasma,2022,259(1):75−90. doi: 10.1007/s00709-021-01641-1
    [22]
    GU Q H, LIU Y P, ZHEN L, et al. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway[J]. Carbohydrate Polymers, 2022: 119694.
    [23]
    ZHANG J Y, CHEN H L, LUO L, et al. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria[J]. Carbohydrate Polymers,2021,267:118219. doi: 10.1016/j.carbpol.2021.118219
    [24]
    CHINESE P C. Pharmacopoeia of the people's republic of China: Part 4[S]. Peking: China Medical Science Press, 2020: 39−84.
    [25]
    MINZANOVA S T, MIRONOV V F, ARKHIPOVA D M, et al. Biological activity and pharmacological application of pectic polysaccharides: A review[J]. Polymers,2018,10(12):1407. doi: 10.3390/polym10121407
    [26]
    ZOU Y F, LI C Y, FU Y P, et al. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv. ) Diels[J]. Journal of Ethnopharmacology, 2022: 115446.
    [27]
    ZHANG Y, ZHOU T, WANG H, et al. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv. ) Diels[J]. Carbohydrate Polymers,2016,147:401−408. doi: 10.1016/j.carbpol.2016.04.002
    [28]
    KACURAKOVA M, CAPEK P, SASINKOVA V, et al. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43(2):195−203. doi: 10.1016/S0144-8617(00)00151-X
    [29]
    YUAN L L, QIU Z C, YANG Y M, et al. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach[J]. Food Chemistry,2022,385:132637. doi: 10.1016/j.foodchem.2022.132637
    [30]
    HONG T, YIN J Y, NIE S P, et al. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective[J]. Food Chemistry:X,2021,12:100168. doi: 10.1016/j.fochx.2021.100168
    [31]
    ZHANG X, CAI Z, MAO H, et al. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects[J]. International Journal of Biological Macromolecules,2021,166:1387−1395. doi: 10.1016/j.ijbiomac.2020.11.018
    [32]
    SHEN C Y, JIANG J G, LI M Q, et al. Structural characterization and immunomodulatory activity of novel polysaccharides from Citrus aurantium Linn. variant amara Engl[J]. Journal of Functional Foods,2017,35:352−362. doi: 10.1016/j.jff.2017.05.055
  • Cited by

    Periodical cited type(4)

    1. 吴海星,黄安妮,高霞,申铉日,夏光华,张雪莹. Lysinibacillus sphaericus胶原酶的异源表达、鉴定及其在抗氧化活性肽制备中的应用. 食品工业科技. 2025(06): 206-216 . 本站查看
    2. 周晓,刘倩倩,伍灵芝,蒋立文,黄海,刘洋. 不同工艺对石螺肉酶解产物风味物质的影响. 中国调味品. 2024(02): 137-146 .
    3. 朱清清,马瑞娟,陈剑锋,谢友坪. 响应面法优化鱿鱼皮蛋白肽的制备工艺及其理化性质分析. 食品工业科技. 2024(07): 217-226 . 本站查看
    4. 李小锋,张露,罗晶,王思宇,温庆辉,尹红梅,涂宗财. 烹饪方式对草鱼肉蛋白消化特性及其消化产物降血压活性的影响. 食品与发酵工业. 2024(15): 186-195 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (100) PDF downloads (11) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return