Citation: | YANG Qian, HE Shuting, MENG Dong, et al. Composition and Immune Regulatory Effect of Polysaccharides Extracted from Different Parts of Urtica macrorrhiza Hand.-Mazz. DOI: 10.13386/j.issn1002-0306.2022100210 |
[1] |
MZID M, BEN K S, BARDAA S, et al. Chemical composition, phytochemical constituents, antioxidant and anti-inflammatory activities of Urtica urens L. leaves[J]. Archives of Physiology and Biochemistry,2017,123(2):93−104. doi: 10.1080/13813455.2016.1255899
|
[2] |
TAHERI Y, QUISPE C, HERRERA-BRAVO J, et al. Urtica dioica-derived phytochemicals for pharmacological and therapeutic applications[J]. Evidence-based Complementary and Alternative Medicine,2022,2022:4024331.
|
[3] |
KARAMI A, SHEIKHSOLEIMANI M, MEMARZADEH R, et al. Urtica dioica root extract on clinical and biochemical parameters in patients with benign prostatic hyperplasia, randomized controlled trial[J]. Pakistan Journal of Biological Sciences: PJBS,2020,23:1338−1344. doi: 10.3923/pjbs.2020.1338.1344
|
[4] |
OTLES S, YALCIN B. Phenolic compounds analysis of root, stalk, and leaves of nettle[J]. The Scientific World Journal,2012,2012:12.
|
[5] |
ĐUROVIĆ S, PAVLIĆ B, ŠORGIĆ S, et al. Chemical composition of stinging nettle leaves obtained by different analytical approaches[J]. Journal of Functional Foods,2017,32:18−26. doi: 10.1016/j.jff.2017.02.019
|
[6] |
GRAUSO L, EMRICK S, BONANOMI G, et al. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis[J]. Phytochemical Analysis,2019,30(5):535−546. doi: 10.1002/pca.2845
|
[7] |
PAULAUSKIENĖ A, TARASEVIČIENĖ Ž, LAUKAGALIS V. Influence of harvesting time on the chemical composition of wild stinging nettle (Urtica dioica L.)[J]. Plants,2021,10(4):686. doi: 10.3390/plants10040686
|
[8] |
WANG M, ZHANG Y, ZHANG H, et al. The active glycosides from Urtica fissa rhizome decoction[J]. Journal of natural medicines,2018,72(2):557−562. doi: 10.1007/s11418-018-1172-3
|
[9] |
TANG M, CHENG L, LIU Y, et al. Plant polysaccharides modulate immune function via the gut microbiome and may have potential in COVID-19 therapy[J]. Molecules,2022,27(9):2773. doi: 10.3390/molecules27092773
|
[10] |
GUO R, CHEN M, DING Y, et al. Polysaccharides as potential anti-tumor biomacromolecules-A review[J]. Frontiers in nutrition,2022,9:838179. doi: 10.3389/fnut.2022.838179
|
[11] |
HU Y, WANG S, SHI Z, et al. Purification, characterization, and antioxidant activity of polysaccharides from Okara[J]. Journal of Food Processing and Preservation,2022,46(3):e16411.
|
[12] |
CLAUS-DESBONNET H, NIKLY E, NALBANTOVA V, et al. Polysaccharides and their derivatives as potential antiviral molecules[J]. Viruses,2022,14(2):426. doi: 10.3390/v14020426
|
[13] |
CHEN X C, HE S, LI Y X, et al. Inhibition of spontaneous canine benign prostatic hyperplasia by an Urtica fissa polysaccharide fraction[J]. Planta medica,2015,81(1):10−14.
|
[14] |
WANG Z J, LI Y H, WANG C J, et al. Oral administration of Urtica macrorrhiza Hand. -Mazz. polysaccharides to protect against cyclophosphamide-induced intestinal immunosuppression[J]. Experimental and Therapeutic Medicine,2019,18(3):2178−2186.
|
[15] |
QU M H, WANG C J, LIANG Y Q, et al. Urtica macrorrhiza Hand-Mazz polysaccharides induce cord blood monocytes into mature dendritic cells (DCs) and its effect on surface molecules expression of DCs[J]. Natural Product Research and Development,2016,28(5):745−748.
|
[16] |
LI Y H, LIANG Y Q, WANG C J, et al. Effect of Urtica macrorrhiza Hand-Mazz polysaccharide on the phenotype of intestinal paired node cells and TLR4 in cyclophosphamide-induced immunosuppressed mice[J]. Chinese Traditional Patent Medicine,2017,39(6):1272−1276.
|
[17] |
LI G, JU Y, WEN Y, et al. Screening of codonopsis radix polysaccharides with different molecular weights and evaluation of their immunomodulatory activity in vitro and in vivo[J]. Molecules,2022,27(17):5454. doi: 10.3390/molecules27175454
|
[18] |
TIAN H, LIANG Y, LIU G, et al. Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice[J]. International Journal of Biological Macromolecules,2021,182:595−611. doi: 10.1016/j.ijbiomac.2021.03.144
|
[19] |
TAO S, REN Z, YANG Z, et al. Effects of different molecular weight polysaccharides from Dendrobium officinale Kimura & Migo on human colorectal cancer and transcriptome analysis of differentially expressed genes[J]. Frontiers in Pharmacology,2021,12:704486. doi: 10.3389/fphar.2021.704486
|
[20] |
DRIRA M, HENTATI F, BABICH O, et al. Bioactive carbohydrate polymers—between myth and reality[J]. Molecules,2021,26(23):7068. doi: 10.3390/molecules26237068
|
[21] |
FALERI C, XU X, MARERI L, et al. Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers[J]. Protoplasma,2022,259(1):75−90. doi: 10.1007/s00709-021-01641-1
|
[22] |
GU Q H, LIU Y P, ZHEN L, et al. The structures of two glucomannans from Bletilla formosana and their protective effect on inflammation via inhibiting NF-κB pathway[J]. Carbohydrate Polymers, 2022: 119694.
|
[23] |
ZHANG J Y, CHEN H L, LUO L, et al. Structures of fructan and galactan from Polygonatum cyrtonema and their utilization by probiotic bacteria[J]. Carbohydrate Polymers,2021,267:118219. doi: 10.1016/j.carbpol.2021.118219
|
[24] |
CHINESE P C. Pharmacopoeia of the people's republic of China: Part 4[S]. Peking: China Medical Science Press, 2020: 39−84.
|
[25] |
MINZANOVA S T, MIRONOV V F, ARKHIPOVA D M, et al. Biological activity and pharmacological application of pectic polysaccharides: A review[J]. Polymers,2018,10(12):1407. doi: 10.3390/polym10121407
|
[26] |
ZOU Y F, LI C Y, FU Y P, et al. The comparison of preliminary structure and intestinal anti-inflammatory and anti-oxidative activities of polysaccharides from different root parts of Angelica sinensis (Oliv. ) Diels[J]. Journal of Ethnopharmacology, 2022: 115446.
|
[27] |
ZHANG Y, ZHOU T, WANG H, et al. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv. ) Diels[J]. Carbohydrate Polymers,2016,147:401−408. doi: 10.1016/j.carbpol.2016.04.002
|
[28] |
KACURAKOVA M, CAPEK P, SASINKOVA V, et al. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses[J]. Carbohydrate Polymers,2000,43(2):195−203. doi: 10.1016/S0144-8617(00)00151-X
|
[29] |
YUAN L L, QIU Z C, YANG Y M, et al. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach[J]. Food Chemistry,2022,385:132637. doi: 10.1016/j.foodchem.2022.132637
|
[30] |
HONG T, YIN J Y, NIE S P, et al. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective[J]. Food Chemistry:X,2021,12:100168. doi: 10.1016/j.fochx.2021.100168
|
[31] |
ZHANG X, CAI Z, MAO H, et al. Isolation and structure elucidation of polysaccharides from fruiting bodies of mushroom Coriolus versicolor and evaluation of their immunomodulatory effects[J]. International Journal of Biological Macromolecules,2021,166:1387−1395. doi: 10.1016/j.ijbiomac.2020.11.018
|
[32] |
SHEN C Y, JIANG J G, LI M Q, et al. Structural characterization and immunomodulatory activity of novel polysaccharides from Citrus aurantium Linn. variant amara Engl[J]. Journal of Functional Foods,2017,35:352−362. doi: 10.1016/j.jff.2017.05.055
|
1. |
韩晓云,郑丹,张雪瑶,杜宝昌,孙庆申. 寒地桑叶多糖化学组成及其生物活性分析. 食品科学. 2024(15): 59-66 .
![]() | |
2. |
伍根瑞,马建成,李继兴,罗娅,包爽,王重娟,吴明一. 粗根荨麻多糖对巨噬细胞吞噬功能和极化的影响. 食品工业科技. 2024(23): 358-365 .
![]() | |
3. |
藏颖,梁钟文,刘松,高丹,黄羽诺,李媚,刘红全. 雨生红球藻藻渣多糖提取条件优化及降血脂活性分析. 食品研究与开发. 2024(22): 102-110 .
![]() |