WANG Huan, WANG Lejiao, YUE Chenlinrui, et al. Effects of Ultrafine Grinding Pretreatment on Physicochemical Properties of Alkali- and Water-Extracted Wheat Bran Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(22): 19−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100202.
Citation: WANG Huan, WANG Lejiao, YUE Chenlinrui, et al. Effects of Ultrafine Grinding Pretreatment on Physicochemical Properties of Alkali- and Water-Extracted Wheat Bran Polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(22): 19−27. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100202.

Effects of Ultrafine Grinding Pretreatment on Physicochemical Properties of Alkali- and Water-Extracted Wheat Bran Polysaccharides

More Information
  • Received Date: October 20, 2022
  • Available Online: September 11, 2023
  • To utilize wheat bran by-products in high value, wheat bran raw materials were pretreated with ultrafine grinding (for 0, 10, 20, and 30 min) and wheat bran polysaccharide was obtained by water extraction and alkali extraction. The effects of ultrafine grinding pretreatment on the physicochemical properties of wheat bran polysaccharides were analyzed based on yield, chemical composition (arabinoxylan, total sugar, protein, and ferulic acid), infrared spectrum, monosaccharide composition, potential, particle size, solubility, and microstructure. The results showed that the yield of alkali-extracted and water-extracted wheat bran polysaccharide increased from 6.6% and 1.34% to 15.03% and 6.28%, respectively. The content of arabxylan (AX) obtained by alkali extraction and water extraction increased from 53.13% and 33.32% to 73.35% and 37.52%, respectively. The particle size of alkali-extracted and water-extracted wheat bran polysaccharide decreased from 308.47 and 919.23 nm to 203.8 and 168.03 nm, respectively. The results from infrared spectroscopy and monosaccharide composition analysis showed that the ultrafine grinding pretreatment had little effect on the structure of the functional group of polysaccharide extracted from wheat bran by alkali and water extraction. However, the pretreatment could destroy the ordered structure of the wheat bran polysaccharide. The total content and proportion of arabinose and xylose, which were the main components of wheat bran polysaccharide, increased significantly after ultrafine grinding (P<0.05). The scanning electron microscopic (SEM) data showed that the particle shape of the polysaccharide changed from large to small and there was high adhesion between polysaccharide. Taken together, the ultrafine grinding pretreatment can improve the yield of wheat bran polysaccharide and enhance the content of Arabxylan, while reducing the particle size of the polysaccharide.
  • [1]
    黎芳, 刘佳, 王冉冉, 等. 小麦麸皮水不溶性阿拉伯木聚糖提取及其酶解产物分析[J]. 中国酿造,2019,38(2):122−126 doi: 10.11882/j.issn.0254-5071.2019.02.023

    LI Fang, LIU Jia, WANG Ranran, et al. Extraction of water insoluble arabinoxylan from wheat bran and analysis of its enzymatic hydrolyzed products[J]. China Brewing,2019,38(2) :122−126. doi: 10.11882/j.issn.0254-5071.2019.02.023
    [2]
    龙志礼, 刘小郡, 李坚强, 等. 麦麸的营养组分及功能性成分的提取[J]. 粮食加工,2021,46(5):28−32

    LONG Zhili, LIU Xiaojun, LI Jianqiang, et al. Extraction of nutritional components and functional components of wheat bran[J]. Grain Processing , 2021,46(5):28−32.
    [3]
    中华人民共和国国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2023

    National Bureau of Statistics of China. China statistical yearbook[M]. Beijing:China Statistics Press, 2023.
    [4]
    吕青青. 小麦麸皮多糖的结构表征、硒化改性及生理活性研究[D]. 合肥:合肥工业大学, 2020

    LÜ Qingqing. Structural representation, selenium modification and physiological activity of wheat bran polysaccharides[D]. Hefei:Hefei University of Technology, 2020.
    [5]
    朱翠玲, 陈亮, 沈婷, 等. 小麦麸皮多糖的研究进展[J]. 保鲜与加工,2019,19(2):163−167 doi: 10.3969/j.issn.1009-6221.2019.02.027

    ZHU Cuiling, CHEN Liang, SHEN Ting, et al. Research progress on polysaccharides from wheat bran[J]. Storage and Process,2019,19(2):163−167. doi: 10.3969/j.issn.1009-6221.2019.02.027
    [6]
    LÜ Q Q, CAO J J, LIU R, et al. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran[J]. Food Chemistry, 2021, 341(Mar.30 Pt.1):128218.1−11.
    [7]
    BIELY P, SINGH S, PUCHART V. Towards enzymatic breakdown of complex plant xylan structures:state of the art[J]. Biotechnology Advances:An International Review Journal,2016,34(7):1260−1274.
    [8]
    王苗苗. 酶法制备小麦麸皮低聚糖工艺及理化性质研究[D]. 天津:天津科技大学, 2015

    WANG Miaomiao. Study on the preparation process and physicochemical properties of wheat bran oligosaccharides by enzymatic method[D]. Tianjin:Tianjin University of Science and Technology, 2015.
    [9]
    LI H, DONG Z, LIU X, et al. Structure characterization of two novel polysaccharides from Colocasia esculenta (taro) and a comparative study of their immunomodulatory activities[J]. Journal of Functional Foods,2018,42:47−57. doi: 10.1016/j.jff.2017.12.067
    [10]
    MANTZOURANI I, TERPOU A, BEKATOROU A, et al. Functional pomegranate beverage production by fermentation with a novel synbiotic L paracasei biocatalyst[J]. Food Chemistry,2020,308:125658. doi: 10.1016/j.foodchem.2019.125658
    [11]
    寇福兵. 超微粉碎板栗粉理化性质及其对面条加工特性的影响[D]. 重庆:西南大学, 2022

    KOU Fubing. Physical and chemical properties of ultrafine crushed chestnut powder and its effect on noodle processing characteristics[D]. Chongqing:Southwest University, 2022.
    [12]
    RAMACHANDRAIAH K, CHIN K B. Evaluation of ball-milling time on the physicochemical and antioxidant properties of persimmon by-products powder[J]. Innovative Food Science & Emerging Technologies,2016,37:115−124.
    [13]
    ZHU K X, HUANG S, PENG W, et al. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber[J]. Food Research International,2010,43(4):943−948. doi: 10.1016/j.foodres.2010.01.005
    [14]
    JIAN H H, YU Q C, DE J N, et al. Effect of superfine grinding on quality and antioxidant property of fine green tea powders[J]. LWT-Food Science and Technology,2012,45:8−12. doi: 10.1016/j.lwt.2011.08.002
    [15]
    赵愉涵, 秦畅, 孙斐, 等. 超微粉碎处理对八宝粥粉理化特性及功能特性的影响[J]. 食品工业科技,2022,43 (18):21−28 doi: 10.13386/j.issn1002-0306.2021090335

    ZHAO Yuhan, QIN Chang, SUN Fei, et al. Effects of superfine grinding treatment on the physicochemical and functional properties of mixed congee powder[J]. Science and Technology of Food Industry,2022,43 (18):21−28. doi: 10.13386/j.issn1002-0306.2021090335
    [16]
    余青. 超微粉碎麦麸膳食纤维和富硒西蓝花对香肠品质的影响[D]. 武汉:武汉轻工大学, 2020

    YU Qing. Ultra-micro-crushed wheat bran dietary fiber and selenium-rich blue flower effect on the quality of sausages[D]. Wuhan:Wuhan Light Industry University, 2020.
    [17]
    MRITPAL K, BALWINDER S, MADHAV P Y, et al. Isolation of arabinoxylan and cellulose-rich arabinoxylan from wheat bran of different varieties and their functionalities[J]. Food Hydrocolloids,2021,112, 106287. doi: 10.1016/j.foodhyd.2020.106287
    [18]
    苏东民, 刘林, 李雪, 等. 不同预处理方法对小麦麸皮阿拉伯木聚糖提取得率的影响[J]. 粮食加工,2011,36(4):37−39 doi: 10.3969/j.issn.1007-6395.2011.04.014

    SU Dongmin, LIU Lin, LI Xue, et al. Effect on Arabinoxylans obtaining rate in wheat bran for different pretreatment methods[J]. Grain Processing,2011,36(4):37−39. doi: 10.3969/j.issn.1007-6395.2011.04.014
    [19]
    TING Z H, SHI Y X, ZHU H D, et al. Effects of superfine grinding on physicochemical properties and morphological structure of coix seed powders[J]. Cereal Science,2021,102, 103361. doi: 10.1016/j.jcs.2021.103361
    [20]
    DOUGLAS S G. A rapid method for the determination of pentosans in wheat flour[J]. Food Chemistry,1981,7(2):139−145. doi: 10.1016/0308-8146(81)90059-5
    [21]
    SN/T 2497.20-2010 进出口危险化学品安全试验方法. 第20部分:Bradford法测定蛋白质含量[S]. 中华人民共和国国家质量监督检验检疫总局

    SN/T 2497.20-2010 Import and export hazardous chemical safety test method. Part 20:Bradford method to determine the protein content[S]. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.
    [22]
    DUBIOS M G. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28:350−357. doi: 10.1021/ac60111a017
    [23]
    MALUNGA L N, BETA T. Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase[J]. Food Chemistry,2015,167:311−319. doi: 10.1016/j.foodchem.2014.07.001
    [24]
    HUANG F, LIU H J, ZHANG R F, et al. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques[J]. Carbohydrate Polymers,2019,206:344−351. doi: 10.1016/j.carbpol.2018.11.012
    [25]
    SHARIF H R, ABBAS S, MAJEED H, et al. Formulation, characterization and antimicrobial properties of black cumin essential oil nanoemulsions stabilized by OSA starch[J]. Journal of Food Science and Technology,2017,54:3358−3365. doi: 10.1007/s13197-017-2800-8
    [26]
    刘慧君. 龙眼果肉多糖超微粉碎—酶解辅助提取及其理化特性与生物活性[D]. 广州:华南农业大学, 2018

    LIU Huijun. Longan flesh polysaccharide super microfinance—enzyme disintegration assist extraction and their physical and chemical characteristics and biological activity[D]. Guangzhou:South China Agricultural University, 2018.
    [27]
    WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit[J]. Food Chemistry,2018,249:127−135.
    [28]
    乔小全, 任广跃, 段续, 等. 超微粉碎辅助提取黑豆皮水溶性膳食纤维及其特性研究[J]. 中国粮油学报,2018,33 (11):92−98, 104

    QIAO Xiaoquan, REN Guangyue, DUAN Xu, et al. Extraction of water-soluble dietary fiber from black soybean hull by superfine grinding-assisted enzymatic hydrolysis and its characteristics[J]. Journal of the Chinese Cereals and Oils Association,2018,33 (11):92−98, 104.
    [29]
    杨莎, 郭晓娜, 朱科学, 等. 碱提方法对小麦麸皮阿拉伯木聚糖结构及面团特性的影响[J]. 中国粮油学报,2017,32 (11):8−13,33 doi: 10.3969/j.issn.1003-0174.2017.11.002

    YANG Sha, GUO Xiaona, ZHU Kexue, et al. Effect of arabinoxylan extracted by different methods on the dough thermo-mechanical and rheological properties[J]. Journal of the Chinese Cereals and Oils Association,2017,32 (11):8−13,33. doi: 10.3969/j.issn.1003-0174.2017.11.002
    [30]
    史早, 张甫生, 杨金来, 等. 超微粉碎对方竹笋全粉理化特性及微观结构的影响[J]. 食品工业科技,2021,42(24):40−47

    SHI Zao, ZHANG Fusheng, YANG Jinlai, et al. Effects of ultrafine grinding on the physicochemical properties and microstructure of the whole bamboo shoots powder[J]. Science and Technology of Food Industry,2021,42(24):40−47.
    [31]
    任晓婵, 常婧瑶, 马晓丽, 等. 超微粉碎后粒径对大麦全粉品质特性的影响[J]. 食品工业科技,2022,43(10):80−86

    REN Xiaochan, CHANG Jinyao, MA Xiaoli, et al. Effect of particle size after ultrafine grinding on the quality characteristics of whole barley flour[J]. Science and Technology of Food Industry,2022,43(10):80−86.
    [32]
    BAI Y, LIU L, ZHANG R, et al. Ultrahigh pressure-assisted enzymatic extraction maximizes the yield of longan pulp polysaccharides and their acetylcholinesterase inhibitory activity in vitro[J]. International Journal of Biological Macromolecules,2017,96:214−222. doi: 10.1016/j.ijbiomac.2016.11.105
    [33]
    YUAN J, CHEN S, WANG L, et al. Preparation of purified fractions for polysaccharides from Monetaria moneta Linnaeus and comparison their characteristics and antioxidant activities[J]. International Journal of Biological Macromolecules,2017,108:342−349.
    [34]
    牛潇潇, 王杰, 王宁, 等. 超微粉碎对马铃薯渣理化性质和微观结构的影响[J]. 中国粮油学报,2022,37(12):84−91

    NIU Xiaoxiao, WANG Jie, WANG Ning, et al. Effects of ultrafine pulverization on physicochemical properties and microstructure of potato dregs[J]. Journal of the Chinese Cereals and Oils Association,2022,37(12):84−91.
    [35]
    余青, 陈嘉浩, 王寅竹, 等. 超微粉碎处理对麦麸粉功能及结构特性的影响[J]. 粮食科技与经济,2020,45(2):56−62,81 doi: 10.16465/j.gste.cn431252ts.20200213

    YU Qing, CHEN Jiahao, WANG Yin Zhu, et al. Effects of ultrafine pulverization on the functional and structural properties of wheat bran flour[J]. Food Science and Technology and Economics,2020,45(2):56−62,81. doi: 10.16465/j.gste.cn431252ts.20200213
    [36]
    吴金辉. 海带膳食纤维和多糖的制备、理化性质及生物活性研究[D]. 秦皇岛:河北科技师范学院, 2022:17

    WU Jinhui. Preparation, physicochemical properties and biological activities of dietary fiber and polysaccharides from Laminaria Japonica[D]. Qinhuangdao:Hebei Normal University of Science and Technology, 2022:17.
    [37]
    梅新, 木泰华, 陈学玲, 等. 超微粉碎对甘薯膳食纤维成分及物化特性影响[J]. 中国粮油学报,2014,29(2):76−81

    MEI Xin, MU Taihua, CHEN Xueling, et al. Effect of micronization on composition and physicochemical properties of sweet potato dietary fiber[J]. Journal of the Chinese Cereals and Oils Association,2014,29(2):76−81.
  • Cited by

    Periodical cited type(12)

    1. 林柳雁,王丽,萧绮莉,蒋小红,陈惠冰. 成人炎症性肠病患者经口营养管理的证据总结. 护理实践与研究. 2025(02): 244-251 .
    2. 雷露,吕沛然,张宁,梁越,赵耀,赵娴. 中医治疗炎症性肠病机制的研究进展. 中医药学报. 2024(02): 116-121 .
    3. 李振,崔艳红,刘长忠,袁梦. 枯草芽孢杆菌对环境耐受性和产中性蛋白酶能力研究. 黑龙江畜牧兽医. 2024(04): 81-87+92 .
    4. 耿英杰,戚浩龙,李园,蔡晓青. 益生菌治疗炎症性肠病的研究进展. 中国医药工业杂志. 2024(08): 1069-1077 .
    5. 李文,刘夫锋. 基于益生菌口服药物递送系统的研究进展. 微生物学报. 2024(11): 4086-4105 .
    6. 曾馨苑,吴严玮. 益生菌联合复方谷氨酰胺和马来酸曲美布汀治疗腹泻型肠易激综合征的疗效观察. 中国处方药. 2024(11): 105-107 .
    7. 乌云,浩斯,巴达玛斯仁,锡林其其格,斯琴. 蒙医大肠宝如病与炎症性肠病的相关研究进展. 中国民族医药杂志. 2023(01): 65-67 .
    8. 王秋珍,邓自腾,兰静,刘雪连,范祥伟,薛毅,马云飞. 干酪乳杆菌对DSS诱导结肠炎小鼠焦虑样行为的影响及对结肠的保护作用. 中国农业大学学报. 2023(04): 139-146 .
    9. 杨硕,唐宗馨,段勃帆,陈禹含,郭欢新,孟祥晨. 双歧杆菌及其制剂对炎症性肠病作用机制研究进展. 食品科学. 2023(05): 275-281 .
    10. 侯保秋,董怡文,刘方. 一株分离自牦牛乳中的副干酪乳杆菌ZZ102对溃疡性结肠炎的缓解作用研究. 中国乳品工业. 2023(10): 21-25 .
    11. 刘柘君,刘振权,孙文燕. 复方益生菌粉提高小鼠免疫力的实验研究. 食品与药品. 2023(05): 456-461 .
    12. 杨敏琪,张吉翔,董卫国. 益生菌治疗炎性肠病的研究进展. 疑难病杂志. 2022(11): 1202-1205 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (133) PDF downloads (19) Cited by(21)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return