CHEN Yanping, HE Juping, LIU Yi, et al. Optimization of Ultrasonic-Microwave Assisted Extraction of Polysaccharides from Eucommia ulmoides Leaves and Its Anticoagulant Activity in Vitro[J]. Science and Technology of Food Industry, 2023, 44(17): 202−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100189.
Citation: CHEN Yanping, HE Juping, LIU Yi, et al. Optimization of Ultrasonic-Microwave Assisted Extraction of Polysaccharides from Eucommia ulmoides Leaves and Its Anticoagulant Activity in Vitro[J]. Science and Technology of Food Industry, 2023, 44(17): 202−211. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100189.

Optimization of Ultrasonic-Microwave Assisted Extraction of Polysaccharides from Eucommia ulmoides Leaves and Its Anticoagulant Activity in Vitro

More Information
  • Received Date: October 18, 2022
  • Available Online: July 05, 2023
  • To develop the rich resources of Eucommia ulmoides leaves in China, the optimal conditions of extracting polysaccharides from Eucommia ulmoides leaves by ultrasonic and microwave, the physicochemical properties and the anticoagulant activity in vitro of the extracted polysaccharides were studied. Firstly, the ranges of factors affecting the yield of polysaccharide, such as ultrasonic power, extraction temperature, microwave power, ratio of solid to liquid, extraction time, were determined by single factor experiment. The key factors were further screened by Plackett­Burman test, and the Box-Behnken test was used to optimize the process conditions. Finally, the physicochemical properties, such as molecular weight and monosaccharide composition, and the anticoagulant indices, such as activated partial prothrombin time (APTT), prothrombin time (PT), thrombin time (TT) of the refined Eucommia ulmoides leaf polysaccharides, were analyzed. The results showed that the ratio of solid to liquid, the extraction time and the extraction temperature were the key factors. The optimal extraction conditions were the ultrasonic power of 130 W, the extraction temperature of 49 ℃, the microwave power of 200 W, the solid-liquid ratio of 1 to 30 (g:mL) and the extraction time of 20 min. Under these conditions, the actual yield of Eucommia ulmoides leaf polysaccharides was 4.02%±0.03%, close to the theoretical yield of 4.08%. The weight-average molecular mass (Mw) of the refined polysaccharide was 1653 kDa, and the composition and molar ratio of monosaccharide were 37.3% fructose, 35% glucose, 14.6% n-acetyl-d-glucosamine, 8.6% galactose and 4.4% arabinose. The results showed that the polysaccharides of Eucommia ulmoides leaves was β-type acidic polysaccharide. Compared with the negative control, the Eucommia ulmoides polysaccharides significantly increased APTT (P<0.01), and significantly increased PT and TT (P<0.01) at the concentration of 8 mg/mL, indicating that it mainly affected coagulation system through endogenous pathway, could also affect the coagulation process through exogenous and common pathways. This study could provide theoretical basis and technical reference for the high-value utilization of Eucommia ulmoides leaves in China.
  • [1]
    刘攀峰, 王璐, 杜庆鑫, 等. 杜仲在我国的潜在适生区估计及其生态特征分析[J]. 生态学报,2020,40(16):5674−5684. [LIU P F, WANG L, DU Q X, et al. Estimation of potential suitable distribution area and the ecological characteristics of Eucommia ulmoides Oliv. in China[J]. Acta Ecologica Sinica,2020,40(16):5674−5684.

    LIU P F, WANG L, DU Q X, et al. Estimation of potential suitable distribution area and the ecological characteristics of Eucommia ulmoides Oliv. in China[J]. Acta Ecologica Sinica, 2020, 40(16): 5674-5684.
    [2]
    边亮, 陈华国, 周欣. 植物多糖的抗肿瘤活性研究进展[J]. 食品科学,2020,41(7):275−282. [BIAN L, CHEN H G, ZHOU X. Recent advances in understanding the antitumor activity of polysaccharides from plants[J]. Food Science,2020,41(7):275−282. doi: 10.7506/spkx1002-6630-20190330-392

    BIAN L, CHEN H G, ZHOU X. Recent advances in understanding the antitumor activity of polysaccharides from plants[J]. Food Science, 2020, 41(7): 275-282. doi: 10.7506/spkx1002-6630-20190330-392
    [3]
    DAMMAK M I, SALEM Y B, BELAID A, et al. Partial characterization and antitumor activity of a polysaccharide isolated from watermelon rinds[J]. International Journal of Biological Macromolecules,2019,136:632−641. doi: 10.1016/j.ijbiomac.2019.06.110
    [4]
    MENG Y, YI L, CHEN L, et al. Purification, structure characterization and antioxidant activity of polysaccharides from Saposhnikovia divaricata[J]. Chinese Journal of Natural Medicines,2019,17(10):792−800. doi: 10.1016/S1875-5364(19)30096-2
    [5]
    HO T C, KIDDANE A T, SIVAGNANAM S P, et al. Green extraction of polyphenolic-polysaccharide conjugates from Pseuderanthemum palatiferum (Nees) Radlk: Chemical profile and anticoagulant activity[J]. International Journal of Biological Macromolecules,2020,157:484−493. doi: 10.1016/j.ijbiomac.2020.04.113
    [6]
    贾丽娜, 马倩, 王新月, 等. 基于体外发酵模型分析植物多糖对T2DM患者肠道菌群及代谢的影响[J]. 食品科学,2023,44(2):248−261. [JIA L N, MA Q, WANG X Y, et al. Effects of plant polysaccharides on intestinal flora and metabolism in patients with T2DM based on in vitro fermentation model[J]. Food Science,2023,44(2):248−261. doi: 10.7506/spkx1002-6630-20220111-102

    JIA L N, MA Q, WANG X Y, et al. Effects of plant polysaccharides on intestinal flora and metabolism in patients with T2DM based on in vitro fermentation model[J]. Food Science, 2023, 44(2): 248-261. doi: 10.7506/spkx1002-6630-20220111-102
    [7]
    马斌. 微波辅助提取植物中挥发油的方法研究[D]. 重庆: 重庆大学, 2010.

    MA B. Study on methode of mcrowave assistanted extraction of essential oil from plant[D]. Chongqing: Chongqing University, 2010.
    [8]
    HU B, LI Y, SONG J, et al. Oil extraction from tiger nut (Cyperus esculentus L. ) using the combination of microwave-ultrasonic assisted aqueous enzymatic method-design, optimization and quality evaluation[J]. Journal of Chromatography A,2020,1627:461380. doi: 10.1016/j.chroma.2020.461380
    [9]
    JIANG Y, BAI X, LANG S, et al. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology[J]. International Journal of Biological Macromolecules,2019,128:452−458. doi: 10.1016/j.ijbiomac.2019.01.138
    [10]
    陈雪花. 杜仲叶多糖的提取分离、结构表征与HT-29结肠癌细胞抑制活性研究[D]. 吉首: 吉首大学, 2021.

    CHEN X H. Extraction, isolation, structual charactertion and inhibition on HT-29 colon cancer cells of Eucommia ulmoides leaf polysaccharides[D]. Jishou: Jishou University, 2021.
    [11]
    KUSHWAHA S C, KATES M. Modification of phenol-sulfuric acid method for the estimation of sugars in lipids[J]. Lipids,1981,16(5):372−373.
    [12]
    YI P, LI N, WAN J B, et al. Structural characterization and antioxidant activity of a heteropolysaccharide from Ganoderma capense[J]. Carbohydrate Polymers,2015,121:183−189. doi: 10.1016/j.carbpol.2014.11.034
    [13]
    张韬. 一枝黄花植物粗多糖提取工艺及抗氧化活性研究[D]. 舟山: 浙江海洋大学, 2021.

    ZHANG T. Study on extraction technology and antioxidant activity of crude polysaccharide from Solidago[D]. Zhoushan: Zhejiang Ocean University, 2021.
    [14]
    闻志莹. 香椿子多糖的提取、分离纯化及其抗凝血活性研究[D]. 芜湖: 安徽工程大学, 2020.

    WEN Z Y. Study on extraction, purification and anticoagulant activity of polysaccharides from seeds of toona sinensis[D]. Wuhu: Anhui Polytechnic University, 2020.
    [15]
    AFSHARI K, SAMAVATI V, SHAHIDI S A. Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf[J]. International Journal of Biological Macromolecules Structure Function & Interactions,2015,74:558−567. doi: 10.1016/j.ijbiomac.2014.07.023
    [16]
    WANG L, LI T, LIU F, et al. Ultrasonic-assisted enzymatic extraction and characterization of polysaccharides from dandelion (Taraxacum officinale) leaves[J]. International Journal of Biological Macromolecules,2019,126:846−856. doi: 10.1016/j.ijbiomac.2018.12.232
    [17]
    MENG Q, CHEN Z, CHEN F, et al. Optimization of ultrasonic-assisted extraction of polysaccharides from Hemerocallis citrina and the antioxidant activity study[J]. Journal of Food Science,2021,86(7):3082−3096. doi: 10.1111/1750-3841.15806
    [18]
    SUN H, LI C, NI Y, et al. Ultrasonic/microwave-assisted extraction of polysaccharides from Camptotheca acuminata fruits and its antitumor activity[J]. Carbohydrate Polymers,2019,206:557−564. doi: 10.1016/j.carbpol.2018.11.010
    [19]
    ZHENG Y, CUI J, CHEN A H, et al. Optimization of ultrasonic-microwave assisted extraction and hepatoprotective activities of polysaccharides from trametes orientalis[J]. Molecules,2019,24(1):147. doi: 10.3390/molecules24010147
    [20]
    LIU Y, QIANG M, SUN Z, et al. Optimization of ultrasonic extraction of polysaccharides from Hovenia dulcis peduncles and their antioxidant potential[J]. International Journal of Biological Macromolecules,2015,80:350−357. doi: 10.1016/j.ijbiomac.2015.06.054
    [21]
    宫本红. 杜仲叶多糖的提取分离及生物活性研究[D]. 贵阳: 贵州大学, 2008.

    GONG B H. Study on extraction, isolation and biological activity of polysaccharides from Eucommia ulmoides leaves[D]. Guiyang: Guizhou University, 2008.
    [22]
    刘晓河, 张海燕, 梁惠花. 酶法提取杜仲多糖的工艺研究[J]. 河北北方学院学报(医学版),2009,26(3):24−26. [LIU X H, ZHANG H Y, LIANG H H. Study on extraction process of Eucommia ulmoides oliv polysaccharide[J]. Journal of Hebei North University (Medical Edition),2009,26(3):24−26.

    LIU X H, ZHANG H Y, LIANG H H. Study on extraction process of Eucommia ulmoides oliv polysaccharide[J]. Journal of Hebei North University (Medical Edition), 2009, 26(3): 24-26.
    [23]
    杨勇杰, 姜瑞芝, 陈英红, 等. 苯酚硫酸法测定杂多糖含量的研究[J]. 中成药,2005(6):706−708. [YANG Y J, JIANG R Z, CHEN Y H, et al. Determination of sugars in heteropolysaccharide by phenol-sulfuric acid method[J]. Chinese Traditional Patent Medicine,2005(6):706−708. doi: 10.3969/j.issn.1001-1528.2005.06.027

    YANG Y J, JIANG R Z, CHEN Y H, et al. Determination of sugars in heteropolysaccharide by phenol-sulfuric acid method[J]. Chinese Traditional Patent Medicine, 2005(6): 706-708. doi: 10.3969/j.issn.1001-1528.2005.06.027
    [24]
    FENG H, FAN J, SONG Z, et al. Characterization and immunoenhancement activities of Eucommia ulmoides polysaccharides[J]. Carbohydrate Polymers,2016,136:803−811. doi: 10.1016/j.carbpol.2015.09.079
    [25]
    ZHU H, Di H, ZHANG Y, et al. A protein-bound polysaccharide from the stem bark of Eucommia ulmoides and its anti-complementary effect[J]. Carbohydrate Research,2009,344(11):1319−1324. doi: 10.1016/j.carres.2009.05.001
    [26]
    杨杰. 杜仲叶多糖偶联OVA脂质立方液晶对小鼠免疫活性探究[D]. 重庆: 西南大学, 2021.

    YANG J, Study on the immune activity of Eucommia ulmoides leaf polysaccharide coupled with ovalbumin Cubosomes in mice[D]. Chongqing: Southwest University, 2021.
    [27]
    YE G, LI J, ZHANG J, et al. Structural characterization and antitumor activity of a polysaccharide from Dendrobium wardianum[J]. Carbohydrate Polymers,2021,269:118253. doi: 10.1016/j.carbpol.2021.118253
    [28]
    XU J, HOU H, HU J, et al. Optimized microwave extraction, characterization and antioxidant capacity of biological polysaccharides from Eucommia ulmoides Oliver leaf[J]. Scientific Report,2018,8(1):6561. doi: 10.1038/s41598-018-24957-0
    [29]
    王文卿. 杜仲果胶的分离纯化及结构分析[D]. 长春: 东北师范大学, 2021.

    WANG W Q. Isolation, purification and structure analysis of pectin from Eucommia ulmoides[D]. Changchun: Northeast Normal University, 2021.
    [30]
    卞春. 黑木耳抗凝血多糖分离与结构表征及对血栓形成抑制机制[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    BIAN C. Extraction and structural characterization of auricularia auricula anticoagul antpolysaccharide and its inhibition mechanism on thrombosis[D]. Haerbin: Harbin Institute of Technology, 2020.
    [31]
    冯艳风. 大枣多糖体外抗凝血活性研究[D]. 郑州: 河南农业大学, 2013.

    FENG Y F. Study on the anticoagulant activity in vitro of juiube polysaccharide[D]. Zhengzhou: Henan Agricultural University, 2013.
    [32]
    LIU M P, LU W, KU K, et al. Ultrasonic-assisted extraction and antioxidant activity of polysaccharides from Eucommia ulmoides leaf[J]. Pakistan Journal of Pharmaceutical Science,2020,33(2):581−588.
    [33]
    郎茜, 龚蕾, 叶婧, 等. 杜仲叶多糖对糖尿病大鼠的降血糖作用[J]. 现代食品科技,2020,36(10):27−32. [LANG Q, GONG L, YE Q, et al. Hypoglycemic effect of the polysaccharide from Eucommia ulmoides leaves in diabetic rats[J]. Modern Food Science and Technology,2020,36(10):27−32.

    LANG Q, GONG L, YE Q, et al. Hypoglycemic effect of the polysaccharide from Eucommia ulmoides leaves in diabetic rats[J]. Modern Food Science and Technology, 2020, 36(10): 27-32.
    [34]
    宋苗苗. 榴莲皮多糖结构表征及抗凝血活性研究[D]. 开封: 河南大学, 2019.

    SONG M M. Structural characterizationand anticoagulantactivity of polysaccharide from durio zibethinus murr peel[D]. Kaifeng: Henan University, 2019.
    [35]
    MARTINICHEN-HERRERO J C, CARBONERO E R, SASSAKI G L, et al. Anticoagulant and antithrombotic activities of a chemically sulfated galactoglucomannan obtained from the lichen Cladonia ibitipocae[J]. International Journal of Biological Macromolecules,2005,35(1-2):97−102. doi: 10.1016/j.ijbiomac.2004.12.002
  • Cited by

    Periodical cited type(11)

    1. 孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 . 本站查看
    2. 许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
    3. 郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
    4. 范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
    5. 莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
    6. 龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
    7. 董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
    8. 刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
    9. 王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 . 本站查看
    10. 王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
    11. 王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (157) PDF downloads (38) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return