ZHANG Shuo, WANG Fang, DU Lin, et al. Antioxidant Components and Antioxidant Activity of Tibetan Propolis and Its Simulated Digestive Juices[J]. Science and Technology of Food Industry, 2023, 44(17): 399−405. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100181.
Citation: ZHANG Shuo, WANG Fang, DU Lin, et al. Antioxidant Components and Antioxidant Activity of Tibetan Propolis and Its Simulated Digestive Juices[J]. Science and Technology of Food Industry, 2023, 44(17): 399−405. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100181.

Antioxidant Components and Antioxidant Activity of Tibetan Propolis and Its Simulated Digestive Juices

More Information
  • Received Date: October 18, 2022
  • Available Online: July 04, 2023
  • To evaluate the antioxidant activity and potential of propolis, Tibetan propolis and its simulated digestive juice were analyzed for its chemical composition (contents of total phenolics (TPC) and total flavonoids (TFC)), reducing power and antioxidant activity (hydroxyl radical scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, metal iron chelating activity and lipid peroxidation inhibition ability). The results showed that the contents of TPC and TFC in Tibetan propolis were 7.02% and 10.05%, respectively. The contents of TPC and TFC in simulated digestive juices were diminished. The contents of TPC and TFC in simulated gastric digestive juices (2 h) were 0.43% and 6.43%, respectively. The contents of TPC and TFC in simulated intestinal digestive juices (2 h) were 0.32% and 5.11%, respectively. The highest values of antioxidant activity was achieved at a concentration of 1 mg/mL, and the values of reducing power, hydroxyl radical scavenging activity, DPPH radical scavenging activity, metal iron chelating activity and lipid peroxidation inhibition ability in Tibetan propolis were 0.35, 96.60%, 92.53%, 19.96% and 97.01%, respectively. Reducing power and DPPH radical scavenging activity of simulated gastric digestive juices exhibited an increasing trend, with respect to the undigested sample. The highest values of reducing power and DPPH radical scavenging activity were 0.39 and 95.69%, respectively. Hydroxyl radical scavenging activity, metal iron chelating activity and lipid peroxidation inhibition ability of simulated gastric digestive juices exhibited a decreasing trend, with respect to the undigested sample. Simulated intestinal digestive had higher hydroxyl radical scavenging rates, metal ion chelation rates and lipid peroxidation inhibition rates than simulated gastric digestive, with highest values of 99.72%, 69.26% and 80.69%, respectively, the reducing power and DPPH radical scavenging rate experienced a decreasing tendency, but the highest DPPH radical scavenging rate remained at 74.74%. All of these suggested that Tibetan propolis had high antioxidant activity. During in vitro digestion, antioxidant indicators significantly changed, but the changing trend of each indicator was inconsistent. Several indicators still performed well. Tibetan propolis can be used as a premium natural antioxidant.
  • [1]
    管蕊. 蜂胶乙醇提取物对MIN6细胞及2型糖尿病小鼠血糖调节的研究[D]. 济南: 山东师范大学, 2022

    GUAN R. Study on the effect of ethanol extract of propolis on MIN6 cells and blood glucose regulation of type 2 diabetic mice[D]. Jinan: Shandong Normal University, 2022.
    [2]
    WIECZOREK P P, HUDZ N, YEZERSKA O, et al. Chemical variability and pharmacological potential of propolis as a source for the development of new pharmaceutical products[J]. Molecules,2022,27(5):1600−1628. doi: 10.3390/molecules27051600
    [3]
    ZHANG C, SHEN X, CHEN J, et al. Identification of free radical scavengers from Brazilian green propolis using off-line HPLC-DPPH assay and LC-MS[J]. Journal of Food Science,2017,82(7):1602−1607. doi: 10.1111/1750-3841.13730
    [4]
    KEKECOGLU M, SONMEZ E, YALCIN N E, et al. Analysis of detailed chemical and bioactive components of Yigilca honeybee propolis and determination of antioxidant potential[J]. Biology Bulletin,2022,49(5):381−391. doi: 10.1134/S1062359022050144
    [5]
    CUESTA-RUBIO O, MARQUEZ HERNANDEZ I, FERNANDEZ M C, et al. Chemical characterization and antioxidant potential of Ecuadorian propolis[J]. Phytochemistry, 2022: 113415.
    [6]
    ELSWABY S, SADIK M, AZOUZ A, et al. In vitro evaluation of antimicrobial and antioxidant activities of honeybee venom and propolis collected from various regions in Egypt[J]. Egyptian Pharmaceutical Journal,2022,21(2):207−213. doi: 10.4103/epj.epj_18_22
    [7]
    邱潍. 蜂胶有效成分提取及抗氧化活性研究[D]. 武汉: 武汉轻工大学, 2019

    QIU W. Study on extraction and antioxidant activity of effective components of propolis[D]. Wuhan: Wuhan Polytechnic University, 2019.
    [8]
    王启海, 左坚, 戴胜, 等. 蜂胶中总酚提取纯化工艺及抗氧化活性研究[J]. 湘南学院学报(医学版),2019,21(4):1−6. [WANG Q H, ZUO J, DAI S, et al. Extraction, purification and antioxidant activity of total phenolic from propolis[J]. Journal of Xiangnan University (Medical Sciences),2019,21(4):1−6.

    WANG Q H, ZUO J, DAI S, et al. Extraction, purification and antioxidant activity of total phenolic from propolis[J]. Journal of Xiangnan University (Medical Sciences), 2019, 21(4): 1-6.
    [9]
    REGINIO F C, QIN W, KETNAWA S, et al. Bio-properties of Saba banana (Musa saba’, ABB Group): Influence of maturity and changes during simulated in vitro gastrointestinal digestion[J]. Scientific Reports,2020,10(1):6701. doi: 10.1038/s41598-020-63501-x
    [10]
    ZHANG Q, XING B, SUN M, et al. Changes in bio-accessibility, polyphenol profile and antioxidants of quinoa and djulis sprouts during in vitro simulated gastrointestinal digestion[J]. Food Science & Nutrition,2020,8(8):4232−4241.
    [11]
    TU F, XIE C, LI H, et al. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics[J]. Food Chemistry,2021,363:130277. doi: 10.1016/j.foodchem.2021.130277
    [12]
    YEN C H, CHIU H F, WU C H, et al. Beneficial efficacy of various propolis extracts and their digestive products by in vitro simulated gastrointestinal digestion[J]. LWT,2017,84:281−289. doi: 10.1016/j.lwt.2017.05.074
    [13]
    SUN X, CHENG X, ZHANG J, et al. Letting wine polyphenols functional: Estimation of wine polyphenols bioaccessibility under different drinking amount and drinking patterns[J]. Food Research International,2020,127:108704. doi: 10.1016/j.foodres.2019.108704
    [14]
    BOUAYED J, HOFFMANN L, BOHN T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake[J]. Food Chemistry,2011,128(1):14−21. doi: 10.1016/j.foodchem.2011.02.052
    [15]
    封易成, 牟德华. 体外模拟胃肠消化过程中山楂的活性成分及抗氧化性规律[J]. 食品科学,2018,39(7):139−145. [FENG Y C, MOU D H. Changes in active components and antioxidant activity of hawthorn during simulated gastrointestinal digestion in vitro[J]. Food Science,2018,39(7):139−145.

    FENG Y C, MOU D H. Changes in active components and antioxidant activity of hawthorn during simulated gastrointestinal digestion in vitro[J]. Food Science, 2018, 39(7): 139-145.
    [16]
    程启斌, 李石飞, 张立伟. 连翘不同部位总酚含量测定及抗氧化活性比较研究[J]. 化学研究与应用, 2016, 28(5): 610−616

    CHENG Q B, LI S F, ZHANG L W. Study on comparison of antioxidant activity and determination of total phenol content in different parts of Forsythia suspensa[J]. Chemical Research and Application, 2016, 28(5): 610−616.
    [17]
    周利平, 何志敏, 潘小红. 不同仪器检测方法及标准品对保健食品中茶多酚含量测定的影响[J]. 食品安全质量检测学报,2017,8(5):1616−1621. [ZHOU L P, HE Z M, PAN X H. Effects of different instrument testing methods and standard substances on determination of tea polyphenols in health food[J]. Journal of Food Safety and Quality,2017,8(5):1616−1621. doi: 10.19812/j.cnki.jfsq11-5956/ts.2017.05.016

    ZHOU L P, HE Z M, PAN X H. Effects of different instrument testing methods and standard substances on determination of tea polyphenols in health food[J]. Journal of Food Safety and Quality, 2017, 8(5): 1616-1621. doi: 10.19812/j.cnki.jfsq11-5956/ts.2017.05.016
    [18]
    GULCIN I. Antioxidant activity of caffeic acid (3, 4-dihydroxycinnamic acid)[J]. Toxicology,2006,217(2-3):213−220. doi: 10.1016/j.tox.2005.09.011
    [19]
    SHUAI L, MENGYUN J, JIAJUN C, et al. Removal of bound polyphenols and its effect on antioxidant and prebiotics properties of carrot dietary fiber[J]. Food Hydrocolloids,2019,93(2):284−292.
    [20]
    HAISHA Y, YUQIONG D, HUIJING D, et al. Antioxidant compounds from propolis collected in Anhui, China[J]. Molecules,2011,16:3444−3455. doi: 10.3390/molecules16043444
    [21]
    CAI L, ZOU S, LIANG D, et al. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix[J]. Carbohydrate Polymers,2018,184(12):354−365.
    [22]
    赵博, 乔长晟, 汪建明, 等. 出芽短梗霉黑色素的抗氧化活性研究[J]. 食品工业科技,2013,34(6):108−112. [ZHAO B, QIAO C S, WANG J M, et al. Study on antioxidant activities of melanin of Aureobasidium pullulans[J]. Science and Technology of Food Industry,2013,34(6):108−112.

    ZHAO B, QIAO C S, WANG J M, et al. Study on antioxidant activities of melanin of Aureobasidium pullulans[J]. Science and Technology of Food Industry, 2013, 34(6): 108-112.
    [23]
    刘学医, 王晓卉, 刘丽敏. 不同产地蜂胶抗氧化活性评价与抗氧化活性成分研究[J]. 河南农业,2020(20):13−15. [LIU X Y, WANG X H, LIU L M. Evaluation and antioxidant activity of propolis from different producing areas sexual composition research[J]. Henan Agriculture,2020(20):13−15. doi: 10.15904/j.cnki.hnny.2020.20.006

    LIU X Y, WANG X H, LIU L M. Evaluation and antioxidant activity of propolis from different producing areas sexual composition research[J]. Henan Agriculture, 2020(20): 13-15. doi: 10.15904/j.cnki.hnny.2020.20.006
    [24]
    曾林晖. 不同提取方法蜂胶提取物的化学成分、代谢及抗氧化能力的研究[D]. 江西: 南昌大学, 2016

    ZENG L H. Study on the chemical components, metabolism and antioxidant activities of propolis extracted by different methods[D]. Jiangxi: Nanchang University, 2016.
    [25]
    蒋侠森. 蜂胶的化学成分、抗氧化谱效分析及长白山蜂胶的特性研究[D]. 浙江: 浙江大学, 2020

    JIANG X S. Analysis of the chemical composition and anti-oxidation spectrum effect of propolis and the characteristics of Changbai mountains propolis[D]. Zhejiang: Zhejiang University, 2020.
    [26]
    YESILTAS B, CAPANOGLU E, FIRATLIGIL-DURMUS E, et al. Investigating the in-vitro bioaccessibility of propolis and pollen using a simulated gastrointestinal digestion system[J]. Journal of Apicultural Research,2014,53(1):101−108. doi: 10.3896/IBRA.1.53.1.10
    [27]
    CHANG C C, YANG M H, WEN H M, et al. Estimation of total flavonoid content in propolis by two complementary colorimetric methods[J]. Journal of Food and Drug Analysis,2002,10(3):178−182.
    [28]
    FRIEDMAN M, JÜRGENS H S. Effect of pH on the stability of plant phenolic compounds[J]. Journal of Agricultural and Food Chemistry,2000,48(6):2101−2110. doi: 10.1021/jf990489j
    [29]
    BERMUDEZSOTO M, TOMASBARBERAN F, GARCIACONESA M. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion[J]. Food Chemistry,2007,102(3):865−874. doi: 10.1016/j.foodchem.2006.06.025
    [30]
    曹炜, 尉亚辉, 雒西萍, 等. 蜂胶的抗氧化作用研究-Ⅰ. 蜂胶对超氧阴离子和羟基自由基的抑制作用[J]. 西北大学学报(自然科学版),2001(2):146−148. [CAO W, WEI Y H, LUO X P, et al. A study on peroxy radical and hydroxy radical scavenging acitivity of propolis[J]. Journal of Northwest University (Natural Science Edition),2001(2):146−148.

    CAO W, WEI Y H, LUO X P, et al. A study on peroxy radical and hydroxy radical scavenging acitivity of propolis[J]. Journal of Northwest University (Natural Science Edition), 2001(2): 146-148.
    [31]
    TAGLIAZUCCHI D, VERZELLONI E, BERTOLINI D, et al. In vitro bio-accessibility and antioxidant activity of grape polyphenols[J]. Food Chemistry,2010,120(2):599−606. doi: 10.1016/j.foodchem.2009.10.030
    [32]
    TYRAKOWSKA B, SOFFERS A E M F, SZYMUSIAK H, et al. TEAC antioxidant activity of 4-hydroxybenzoates[J]. Free Radical Biology and Medicine,1999,27(11−12):1427−1436. doi: 10.1016/S0891-5849(99)00192-6
    [33]
    BARTKIENE E, LELE V, SAKIENE V, et al. Variations of the antimicrobial, antioxidant, sensory attributes and biogenic amines content in Lithuania-derived bee products[J]. LWT-Food Science and Technology,2020,118:108793. doi: 10.1016/j.lwt.2019.108793
    [34]
    OZDAL T, CEYLAN F D, EROGLU N, et al. Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis[J]. Food Research International,2019,122:528−536. doi: 10.1016/j.foodres.2019.05.028
    [35]
    SFORCIN J M. Biological properties and therapeutic applications of propolis: properties and applications of propolis[J]. Phytotherapy Research,2016,30(6):894−905. doi: 10.1002/ptr.5605
    [36]
    曹炜, 卢珂, 陈卫军, 等. 不同种类蜂蜜抗氧化活性的研究[J]. 食品科学,2005(8):352−356. [CAO W, LU K, CHEN W J, et al. Study on antioxidation effects of different honeys[J]. Food Science,2005(8):352−356.

    CAO W, LU K, CHEN W J, et al. Study on antioxidation effects of different honeys[J]. Food Science, 2005(8): 352-356.
    [37]
    BANKOVA V. Recent trends and important developments in propolis research[J]. Evidence-Based Complementary and Alternative Medicine,2005,2(1):29−32. doi: 10.1093/ecam/neh059
  • Cited by

    Periodical cited type(7)

    1. 孟新涛,许铭强,张婷,古丽米热·祖努纳,牛逍瞳,郭金宝,刘国庆,马燕. 基于GC-IMS技术分析新疆不同品种核桃油挥发性成分的差异. 中国油脂. 2025(03): 102-109 .
    2. 古丽米热·祖努纳,孟新涛,叶朵朵,付慧鑫,乔雪,乔雅洁,张婷. 不同储藏温度下鲜羊肉品质及风味的变化. 现代食品科技. 2025(03): 203-221 .
    3. 乔雪,乔雅洁,付慧鑫,孟新涛,张婷. 低压静电场辅助解冻对牛肉品质的影响. 食品工业科技. 2024(17): 48-56 . 本站查看
    4. 杨秉坤,剧柠,丁雨红,郭蓉,龚绵红. 沙棘酸奶挥发性风味物质的GC-IMS表征. 食品工业科技. 2023(13): 308-315 . 本站查看
    5. 张凡,张宇帆,苏心悦,徐文雅,安焕炯,马倩云,孙剑锋,王颉,王文秀. 基于顶空气相离子迁移谱的干腐病马铃薯挥发性成分分析. 食品科学. 2022(06): 317-323 .
    6. 王福成,米思,李劲松,王雨行,王向红. 基于气相色谱-离子迁移谱技术分析不同包装条件对黄瓜风味的影响. 食品工业科技. 2022(08): 296-304 . 本站查看
    7. 马姗,于文龙,焦英帅,刘卫华,王向红. 不同减菌处理对凡纳对虾贮藏期间品质的影响. 食品科技. 2022(03): 116-124 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (150) PDF downloads (31) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return