ZHOU Jiayue, HOU Yanli, WANG Fanyu, et al. Ultrasonic-Assisted Deep Eutectic Solvent Extraction of Proanthocyanidins from Korean Pine Bark and Its Kinetics[J]. Science and Technology of Food Industry, 2023, 44(14): 229−236. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100070.
Citation: ZHOU Jiayue, HOU Yanli, WANG Fanyu, et al. Ultrasonic-Assisted Deep Eutectic Solvent Extraction of Proanthocyanidins from Korean Pine Bark and Its Kinetics[J]. Science and Technology of Food Industry, 2023, 44(14): 229−236. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100070.

Ultrasonic-Assisted Deep Eutectic Solvent Extraction of Proanthocyanidins from Korean Pine Bark and Its Kinetics

More Information
  • Received Date: October 09, 2022
  • Available Online: May 09, 2023
  • Objective: The technological conditions of ultrasonic-assisted deep eutectic solvent extraction of proanthocyanidins from Korean pine bark were optimized, and the extraction kinetics equation was fitted. The purpose was to provide theoretical and technical reference for the development and utilization of proanthocyanidins from Korean pine bark. Method: Taking the yield of procyanidins as the index, the best deep eutectic solvent system was selected. The main technological parameters of ultrasonic-assisted deep eutectic solvent extraction of proanthocyanidins from Korean pine bark were further optimized by single factor combined with response surface methodology. Through the change of the yield of proanthocyanidins under different temperature and time during the extraction process, the best kinetic model of proanthocyanidins extraction was fitted and verified. Result: The results showed that deep eutectic solvent with the molar ratio of choline chloride, glycerol and water of 1:1:4 was the best solvent for extracting proanthocyanidins from Korean pine bark. The best process parameters optimized by response surface methodology were as follows: The ratio of liquid to material was 16 mL/g, ultrasonic time was 50 min, ultrasonic temperature was 55 ℃, and ultrasonic power was 480 W. The extraction effect of proanthocyanidins from Korean pine bark was the best, and the yield of proanthocyanidins was 4.11%. Boltzman model could well fit the kinetic process of ultrasonic-assisted deep eutectic solvent extraction of proanthocyanidins (R2≥0.9768), and the validation value of the model was highly ansistent with the prediction value (R2≥0.9442). Conclusion: Ultrasonic-assisted deep eutectic solvent could effectively promote the mass transfer of proanthocyanidins from Korean pine bark, and Boltzman model was determined to be the best kinetic model for extraction of proanthocyanidins. The extraction process could also provide reference for the extraction of relevant natural active substances.
  • [1]
    苏晓雨, 王振宇. 红松种子壳多酚物质的提取及抗氧化特性[J]. 农业工程学报,2009,25(S1):198−203. [SU X Y, WANG Z Y. Polyphenol extraction from Pinus koraiensis seed putamina and its antioxidant activities[J]. Transactions of the Chinese Society of Agricultural Engineering,2009,25(S1):198−203.

    SU X Y, WANG Z Y. Polyphenol extraction from Pinus koraiensis seed putamina and its antioxidant activities[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S1): 198-203.
    [2]
    贠可力. 红松抗氧化成分分析及对60Co射线诱导损伤防护作用[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    YUN K L. Antioxidant composition analysis and radioprotective effect of Pinus koraiensis extract on damage induced by 60Co ray[D]. Harbin: Harbin Institute of Technology, 2017.
    [3]
    ZHANG S T, ZHANG L G, WANG L, et al. Total phenols, flavonoids, and procyanidins levels and total antioxidant activity of different korean pine (Pinus koraiensis) varieties[J]. Journal of Forestry Research,2019,30(5):1743−1754. doi: 10.1007/s11676-018-0744-0
    [4]
    祖元刚, 胡艳, 姜守刚. 红松多酚物质的提取工艺及其抗炎活性初步研究[J]. 植物研究,2016,36(4):634−640. [ZU Y G, HU Y, JIANG S Y. Extraction and anti-inflammatory of korean pine polyphenol[J]. Bulletin of Botanical Research,2016,36(4):634−640.

    ZU Y G, HU Y, JIANG S Y. Extraction and anti-inflammatory of korean pine polyphenol[J]. Bulletin of Botanical Research, 2016, 36(4): 634-640.
    [5]
    黄雨洋. 红松多酚分离鉴定及抗氧化抗癌功能研究[D]. 哈尔滨: 东北林业大学, 2014.

    HUANG Y Y. The separation, isolation and identification of polyphenol structures in korean pine bark and evaluation of its antioxidant and anticancer activity[D]. Harbin: Northeast Forestry University, 2014.
    [6]
    包怡红, 王硕, 王文琼, 等. 超声波酶法提取红松树皮中多酚类化合物的研究[J]. 食品工业科技,2013,34(3):232−236. [BAO Y H, WANG S, WANG W Q, et al. Study on ultrasonic-enzymatic extraction of polyphenolic compounds in korean pine bark[J]. Science and Technology of Food Industry,2013,34(3):232−236.

    BAO Y H, WANG S, WANG W Q, et al. Study on ultrasonic-enzymatic extraction of polyphenolic compounds in korean pine bark[J]. Science and Technology of Food Industry, 2013, 34(3): 232-236.
    [7]
    ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications (Cambridge, England),2003,9(1):70−71.
    [8]
    JIANG H, XU Y, SUN C Y, et al. Physicochemical properties and antidiabetic effects of a polysaccharide obtained from polygonatum odoratum[J]. International Journal of Food Science & Technology,2018,53(12):2810−2822.
    [9]
    ZHANG L J, WANG M S. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita thunb[J]. International Journal of Biological Macromolecules,2017,95:75−681.
    [10]
    王晓艺, 李培坤, 李锦红, 等. 超声辅助低共熔溶剂提取玫瑰多酚及其抗氧化活性[J]. 食品研究与开发,2022,43(8):98−105. [WANG X Y, LI P K, LI J H, et al. Ultrasonic-assisted extraction of rose polyphenols by deep eutectic solvent and antioxidant activity[J]. Food Research and Development,2022,43(8):98−105.

    WANG X Y, LI P K, LI J H, et al. Ultrasonic-assisted extraction of rose polyphenols by deep eutectic solvent and antioxidant activity[J]. Food Research and Development, 2022, 43(8): 98-105.
    [11]
    刘金铭, 王辉, 张欢, 等. 超声辅助低共熔溶剂萃取法在活性成分提取与食品分析预处理中应用的研究进展[J]. 食品工业科技,2021,42(7):399−407. [LIU J M, WANG H, ZHANG H, et al. Research progress on extraction of active ingredients and pretreatment of food analysis by ultrasound-assisted deep eutectic solvent method[J]. Science and Technology of Food Industry,2021,42(7):399−407.

    LIU J M, WANG H, ZHANG H, et al. Research progress on extraction of active ingredients and pretreatment of food analysis by ultrasound-assisted deep eutectic solvent method[J]. Science and Technology of Food Industry, 2021, 42(7): 399-407.
    [12]
    张小丽. 落叶松树皮原花青素的抗氧化性及结构的研究[D]. 北京: 北京林业大学, 2013.

    ZHANG X L. Studies on antioxidant properties and structure of proanthocyanidins from larch bark[D]. Beijing: Beijing Forestry University, 2013.
    [13]
    PRIOR R L, FAN E, JI H P, et al. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders[J]. Journal of the Science of Food & Agriculture,2010,90(9):1473−1478.
    [14]
    王伯初, 苏辉, 杨宪, 等. 天然药物提取过程的传质动力学模型[J]. 中成药,2012,34(12):2309−2312. [WANG B C, SU H, YANG X, et al. Kinetic models for extraction process of natural products[J]. Chinese Traditional Patent Medicine,2012,34(12):2309−2312.

    WANG B C, SU H, YANG X, et al. Kinetic models for extraction process of natural products[J]. Chinese Traditional Patent Medicine, 2012, 34(12): 2309-2312.
    [15]
    TANG B K, ZHANG H, ROW K H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples[J]. Journal of Separation Science,2015,38(6):1053−1064. doi: 10.1002/jssc.201401347
    [16]
    AZEVEDO A M O, VILARANDA A G, NEVES A, et al. Development of an automated yeast-based spectrophotometric method for toxicity screening: Application to ionic liquids, GUMBOS, and deep eutectic solvents[J]. Chemosphere,2021(277):130227.
    [17]
    郑茜. 超声辅助低共熔溶剂提取枳椇子中的黄酮[D]. 十堰: 湖北医药学院, 2021.

    ZHENG Q. Ultrasonic assisted deep eutectic solvent extraction of flavonoids from Hovenia dulcis thumb[D]. Shiyan: Hubei University of Medicine Master Thesis, 2021.
    [18]
    LU C, CAO J, WANG N, et al. Significantly improving the solubility of non-steroidal anti-inflammatory drugs in deep eutectic solvents for potential non-aqueous liquid administration[J]. MedChemComm,2016,7(5):955−959. doi: 10.1039/C5MD00551E
    [19]
    ZHAO B Y, XU P, YANG F X. Biocompatible deep eutectic solvents based on choline chloride: characterization and application to the extraction of rutin from Sophora japonica[J]. ACS Sustainable Chemistry & Engineering,2015,3(11):2746−2755.
    [20]
    孔方, 李莉, 刘言娟. 超声辅助低共熔溶剂提取苹果叶中的总黄酮[J]. 食品工业科技,2020,41(14):134−139,147. [KONG F, LI L, LIU Y J. Ultrasonic-assisted deep eutectic solvents extraction of total flavonoids from apple leaves[J]. Science and Technology of Food Industry,2020,41(14):134−139,147.

    KONG F, LI L, LIU Y J. Ultrasonic-assisted deep eutectic solvents extraction of total flavonoids from apple leaves[J]. Science and Technology of Food Industry, 2020, 41(14): 134-139, 147.
    [21]
    黎莉, 杨景淇, 于德涵, 等. 超声辅助低共熔溶剂法提取玉米芯总黄酮工艺优化研究[J]. 食品工业科技,2022,43(10):223−230. [LI L, YANG J Q, YU D H, et al. Optimization of ultrasonic-assisted deep eutectic solvent extraction of total flavonoids from corncob[J]. Science and Technology of Food Industry,2022,43(10):223−230.

    LI L, YANG J Q, YU D H, et al. Optimization of ultrasonic-assisted deep eutectic solvent extraction of total flavonoids from corncob[J]. Science and Technology of Food Industry, 2022, 43(10): 223-230.
    [22]
    ZHAO R M, ZHAO J, DUAN H X, et al. Green and efficient extraction of four bioactive flavonoids from pollen typhae by ultrasound-assisted deep eutectic solvents extraction[J]. Journal of Pharmaceutical and Biomedical Analysis,2018,161:246−253. doi: 10.1016/j.jpba.2018.08.048
    [23]
    ZENG J, DOU Y Q, YAN N, et al. Optimizing ultrasound-assisted deep eutectic solvent extraction of bioactive compounds from Chinese wild rice[J]. Molecules,2019,24(15):2718. doi: 10.3390/molecules24152718
    [24]
    傅钰, 史璇, 张道明, 等. 低共熔溶剂提取马尾松松针抗氧化成分的研究[J]. 北京林业大学学报,2021,43(7):149−158. [FU J, SHI X, ZHANG D M, et al. Antioxidant activities in extracts from Pinus massoniana needles by deep eutectic solvents[J]. Journal of Beijing Forestry University,2021,43(7):149−158.

    FU J, SHI X, ZHANG D M, et al. Antioxidant activities in extracts from Pinus massoniana needles by deep eutectic solvents[J]. Journal of Beijing Forestry University, 2021, 43(7): 149-158.
    [25]
    李艳艳, 王俊青, 刘王文, 等. 响应面法优化超声辅助提取大果青扦叶总黄酮及其抗氧化性研究[J]. 食品研究与开发,2020,41(22):30−36. [LI Y Y, WANG J Q, LIU W W, et al. Study on optimization of ultrasonic assisted extracting process of total flavonoids from Picea neoveitchii leaves by response surface methodology and its antioxidant activity[J]. Food Research and Development,2020,41(22):30−36.

    LI Y Y, WANG J Q, LIU W W, et al. Study on optimization of ultrasonic assisted extracting process of total flavonoids from Picea neoveitchii leaves by response surface methodology and its antioxidant activity[J]. Food Research and Development, 2020, 41(22): 30-36.
    [26]
    董嘉琪, 张晓松, 彭晓婷, 等. 响应面法优化红芪多糖的提取工艺[J]. 动物医学进展,2021,42(4):64−71. [DONG J Q, ZHANG X S, PENG X T, et al. Optimization of extraction process of Radix hedysari polysaccharide by response surface methodology[J]. Progress in Veterinary Medicine,2021,42(4):64−71.

    DONG J Q, ZHANG X S, PENG X T, et al. Optimization of extraction process of Radix hedysari polysaccharide by response surface methodology[J]. Progress in Veterinary Medicine, 2021, 42(4): 64-71.
    [27]
    符群, 李卉, 王振宇, 等. 减压-超声辅助醇法提取薇菜黄酮及其对抗氧化活性的影响[J]. 现代食品科技,2018,34(3):113−120,130. [FU Q, LI H, WANG Z Y, et al. The effect of decompression-ultrasonic assisted alcoholic extraction on the flavonoids from Osmunda japonica thumb and its antioxidant activity[J]. Modern Food Science and Technology,2018,34(3):113−120,130.

    FU Q, LI H, WANG Z Y, et al. The effect of decompression-ultrasonic assisted alcoholic extraction on the flavonoids from Osmunda japonica thumb and its antioxidant activity[J]. Modern Food Science and Technology, 2018, 34(3): 113-120, 130.
    [28]
    GEORGE C S, DOUGLAS G. Macdonald. Kinetics of oil extraction from canola (rapeseed)[J]. The Canadian Journal of Chemical Engineering,1986,64(1):80−86. doi: 10.1002/cjce.5450640112
    [29]
    ALI R A. Review on extraction of phenolic compounds from natural sources using green deep eutectic solvents[J]. Journal of Agricultural and Food Chemistry,2021,69(3):878−912. doi: 10.1021/acs.jafc.0c06641
  • Cited by

    Periodical cited type(14)

    1. 刘非凡,温纪平,展小彬,石松业,李柯新,唐浩洁. 冷等离子体处理在食品中的应用研究进展. 食品研究与开发. 2024(12): 181-188 .
    2. 闵照永. 等离子体活化水及微波协同处理对鲜湿面片特性的影响. 食品科技. 2024(06): 180-186 .
    3. 高婷,尹凯静,邵栋梁,赵丹丹,戴文娜. 低温等离子体技术杀灭食源性致病菌的研究进展. 农产品加工. 2024(14): 100-103 .
    4. 方镇洲,杨体园,赵玲艳,邓洁红. 低温等离子体处理对华容大叶芥菜贮藏品质的影响. 食品安全质量检测学报. 2024(20): 257-262 .
    5. 张腾,江昊. 超声渗透等离子活化水对香蕉切片鲜切品质的影响. 包装工程. 2023(05): 65-74 .
    6. 萧文宇,吴迅,黄显斌,李玲,何志平,郭俭. 低温等离子体活化水对蓝莓表面微生物抑制作用及其贮藏品质的影响. 食品工业科技. 2023(08): 359-365 . 本站查看
    7. 颜心怡,李锦晶,李赤翎,吴金鸿,俞健,王发祥,刘永乐,李向红. 冷等离子体技术对食品组分的影响及其作用机制. 食品工业科技. 2023(12): 445-454 . 本站查看
    8. 李芮,宋雅琪,周丹丹,屠康. 等离子体活化水对鲜切莲藕杀菌及保鲜的影响. 食品与生物技术学报. 2023(10): 30-40 .
    9. 田方,徐咏菁,孙志栋,周琦,王志远,华镇南,蔡路昀. 低温等离子体处理对鲜切猕猴桃片微观结构及理化特性的影响. 食品与发酵工业. 2023(21): 167-174 .
    10. 赵莹,严龙飞,严文静,章建浩. 低温等离子体活化水与介质阻挡放电联合处理对草莓冷杀菌效果及品质的影响. 食品科学. 2022(17): 105-116 .
    11. 韩扬,朱成志,李沁雨,李立,马新新,赵志军,包怡红. ε-聚赖氨酸复合保鲜剂对鸡毛菜品质及微生物的影响. 食品与发酵工业. 2022(18): 205-212 .
    12. 白亚龙,廖小艳,崔妍. 消除鲜食生菜中细菌污染的研究进展. 食品科学. 2022(19): 367-374 .
    13. 相启森,张嵘,杜桂红,王利敏,蒋爱民. 等离子体活化水对沙门氏菌的灭活作用及机制研究. 食品工业科技. 2021(08): 138-143 . 本站查看
    14. 翟娅菲,田佳丽,相启森,禹晓,申瑞玲,王章存. 非热加工技术在果蔬保鲜中的应用. 食品工业. 2021(05): 327-332 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (157) PDF downloads (30) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return