ZHU Yanbin, XU Xinting, LI Yanbing, et al. Effect of Inotodiol on LPS-induced Injury of RAW264.7 Cells[J]. Science and Technology of Food Industry, 2023, 44(19): 401−409. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100017.
Citation: ZHU Yanbin, XU Xinting, LI Yanbing, et al. Effect of Inotodiol on LPS-induced Injury of RAW264.7 Cells[J]. Science and Technology of Food Industry, 2023, 44(19): 401−409. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100017.

Effect of Inotodiol on LPS-induced Injury of RAW264.7 Cells

More Information
  • Received Date: October 07, 2022
  • Available Online: August 04, 2023
  • To explore the effect of Inotolinol (INO) on the inflammatory response of LPS-induced mouse mononuclear macrophages (RAW264.7). The experiment has investigated in vitro the effects of INO on mouse mononuclear macrophages (RAW264.7) induced by LPS. To do this, the following methods were adopted: The viability of RAW264.7 cells was detected by CCK-8 assay. Cell apoptosis was examined by Hoechst33342 and PI. The secretion of interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-18 (IL-18) and the content of nitric oxide (NO) in cells were measured by ELISA and Griess. The production of reactive oxygen species (ROS), the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) in cells were detected by fluorescence probe and kit. The results showed that 20 μmol/L INO could inhibit the decline of RAW264.7 cell viability induced by LPS, prevent cell apoptosis, and significantly inhibit the secretion of IL-6, IL-1β, TNF-α, IL-18 and NO (P<0.01), could significantly reduce the contents of MDA and H2O2 in cells (P<0.01), and could significantly increase the activities of SOD, CAT and GSH in cells (P<0.01). The above results indicate that INO can effectively inhibit the production of pro-inflammatory factors and superoxides induced by LPS in RAW264.7 cells, improve the anti-inflammatory and anti-oxidative abilities of cells, and thus protect cells from damage.
  • [1]
    黄年来. 俄罗斯神秘的民间药用真菌-桦褐孔菌[J]. 中国食用菌,2002(4):7−8. [HUANG N L. A mysterious folk medicinal fungus in Russia-Inonotus obliquus[J]. Chinese Edible Fungi,2002(4):7−8.

    HUANG N L. A mysterious folk medicinal fungus in Russia-Inonotus obliquus[J]. Chinese Edible Fungi, 2002(4): 7-8.
    [2]
    LU Y, JIA Y, XUE Z, et al. Recent developments in Inonotus obliquus (Chaga mushroom) polysaccharides: isolation, structural characteristics, biological activities and application[J]. Polymers (Basel),2021,13(9):1441. doi: 10.3390/polym13091441
    [3]
    ZOU C X, ZHANG Y Y, BAI M, et al. Aromatic compounds from the sclerotia of Inonotus obliquus[J]. Natural Product Research,2021,35(14):2454−2457. doi: 10.1080/14786419.2019.1677656
    [4]
    魏艳梅. 桦褐孔菌中化合物的分离鉴定及其部分生物活性初探[D]. 大庆: 黑龙江八一农垦大学, 2020.

    WEI Y M. Isolation and identification of compounds from Inonotus obliquus and preliminary study on some biological activities[D]. Daqing: Heilongjiang Bayi Agricultural Reclamation University, 2020.
    [5]
    PENG A, LIU S, FANG L, et al. Inonotus obliquus and its bioactive compounds alleviate non-alcoholic fatty liver disease via regulating FXR/SHP/SREBP-1c axis[J]. European Journal of Pharmacology,2022,921:174841. doi: 10.1016/j.ejphar.2022.174841
    [6]
    LEE M G, KWON Y S, NAM K S, et al. Chaga mushroom extract induces autophagy via the AMPK-mTOR signaling pathway in breast cancer cells[J]. Journal of Ethnopharmacology,2021,274:114081. doi: 10.1016/j.jep.2021.114081
    [7]
    KIM J, YANG S C, HWANG A Y, et al. Composition of triterpenoids in Inonotus obliquus and their anti-proliferative activity on cancer cell lines[J]. Molecules,2020,25(18):4066. doi: 10.3390/molecules25184066
    [8]
    杨微, 陈志宝, 陈操, 等. 桦褐孔菌乙醇粗提物对朊病毒复制的抑制作用[J]. 现代食品科技,2021,37(7):8−13. [YANG W, CHEN Z B, CHEN C, et al. Inhibitory effect of ethanol crude extract of Inonotus obliquus on prion replication[J]. Modern Food Technology,2021,37(7):8−13.

    YANG W, CHEN Z B, CHEN C, et al. Inhibitory effect of ethanol crude extract of Inonotus obliquus on prion replication[J]. Modern food technology, 2021, 37(7): 8-13.
    [9]
    魏艳梅, 陈惠琴, 杨理, 等. 桦褐孔菌化学成分的胆碱酯酶抑制和细胞毒活性研究[J]. 天然产物研究与开发,2020,32(7):1156−1163. [WEI Y M, CHEN H Q, YANG L, et al. Cholinesterase inhibition and cytotoxic activity of chemical components of Inonotus obliquus[J]. Research and Development of Natural Products,2020,32(7):1156−1163.

    WEI Y M, CHEN H Q, YANG L, et al. Cholinesterase inhibition and cytotoxic activity of chemical components of Inonotus obliquus[J]. Research and Development of Natural Products, 2020, 32(7): 1156-1163.
    [10]
    贺紫薇, 刘旭, 李东辉, 等. 桦褐孔菌研究进展[J]. 中医药信息,2020,37(2):119−123. [HE Z W, LIU X, LI D H, et al. Research progress of Inonotus obliquus[J]. Information of Traditional Chinese Medicine,2020,37(2):119−123.

    HE Z W, LIU X, LI D H, et al. Research progress of Inonotus obliquus[J]. Information of Traditional Chinese Medicine, 2020, 37(2): 119-123.
    [11]
    ZHAO Y, ZHENG W. Deciphering the antitumoral potential of the bioactive metabolites from medicinal mushroom Inonotus obliquus[J]. Journal of Ethnopharmacology,2021,265:113321. doi: 10.1016/j.jep.2020.113321
    [12]
    张如平, 姚建南, 李国立, 等. 桦褐孔菌多糖抗哮喘作用实验研究[J]. 当代医学,2012,18(12):19−20. [ZHANG R P, YAO J N, LI G L, et al. Experimental study on anti asthma effect of Inonotus obliquus polysaccharide[J]. Contemporary Medicine,2012,18(12):19−20.

    ZHANG R P, YAO J N, LI G L, et al. Experimental study on anti asthma effect of Inonotus obliquus polysaccharide[J]. Contemporary Medicine, 2012, 18(12): 19-20
    [13]
    MATYAS C, HASKÓ G, LIAUDET L, et al. Interplay of cardiovascular mediators, oxidative stress and inflammation in liver disease and its complications[J]. Nature Reviews Cardiology,2021,18(2):117−135. doi: 10.1038/s41569-020-0433-5
    [14]
    DU D, ZHU F, CEHN X, et al. Rapid isolation and purification of inotodiol and trametenolic acid from Inotodiol obliquus by high speed counter current chromatography with evaporative light scatting detection[J]. Phytochemical Analysis,2011,22(5):419−423. doi: 10.1002/pca.1297
    [15]
    KUKULIANSKAIA T A, KURCHENKO N V, KURCHENKO V P, et al. Physicochemical properties of melanins produced by Inonotus obliquus (“chagi”) in the nature and the cultivated fungus[J]. Prikl Biokhim Mikrobiol,2002,38:68−72.
    [16]
    WANG Y, GUO L, LIU C, et al. Total triterpenoid extraction from Inonotus obliquus using ionic liquids and separation of potential lactate dehydrogenase inhibitors via ultrafiltration high-speed countercurrent chromatography[J]. Molecules,2021,26(9):2467. doi: 10.3390/molecules26092467
    [17]
    XU R, MA L, CEHN T, et al. Sophorolipid suppresses lps-induced inflammation in RAW264.7 cells through the NF-κB signaling pathway[J]. Molecules,2022,27(15):5037. doi: 10.3390/molecules27155037
    [18]
    GAWEL S, WARDAS M, NIEDWOROK E, et al. Dialdehyd malonowy (MDA) jako wskaźnik procesów peroksydacji lipidów w organizmie [Malondialdehyde (MDA) as a lipid peroxidation marker][J]. Wiad Lek,2004,57(9-10):453−455.
    [19]
    MAEKAWA M. Lactate dehydrogenase (LDH)[J]. Nihon Rinsho,1995,53(5):1151−1156.
    [20]
    ZHANG Z, XU Y, XIE Z, et al. Association-dissociation of glycolate oxidase with catalase in rice: A potential switch to modulate intracellular H2O2 levels[J]. Molecular Plant,2016,9(5):737−748. doi: 10.1016/j.molp.2016.02.002
    [21]
    SHAPOURI M A, MOHAMMADIAN S, VAZINI H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of Cellular Physiology,2018,233(9):6425−6440. doi: 10.1002/jcp.26429
    [22]
    MILLS C D. M1 and M2 macrophages: Oracles of health and disease[J]. Critical Reviews in Immunology,2012,32(6):463−88. doi: 10.1615/CritRevImmunol.v32.i6.10
    [23]
    QIU P, LIU Y, ZHANG J. Review: The role and mechanisms of macrophage autophagy in sepsis[J]. Inflammation,2019,42(1):6−19. doi: 10.1007/s10753-018-0890-8
    [24]
    KADOMOTO S, IZUMI K, MIZOKAMI A. Macrophage polarity and disease control[J]. International Journal of Molecular Sciences,2021,23(1):144. doi: 10.3390/ijms23010144
    [25]
    WYNN T A, VANNELLA K M. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity,2016,44(3):450−462. doi: 10.1016/j.immuni.2016.02.015
    [26]
    OISHI Y, MANABE I. Macrophages in inflammation, repair and regeneration[J]. International Immunology,2018,30(11):511−528. doi: 10.1093/intimm/dxy054
    [27]
    AGGARWAL B B, GUPTA S C, KIM J H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey[J]. Blood,2012,119(3):651−655. doi: 10.1182/blood-2011-04-325225
    [28]
    BEDOUI S, HEROLD M J, STRASSER A. Emerging connectivity of programmed cell death pathways and its physiological implications[J]. Nature Reviews Molecular Cell Biology,2020,21(11):678−695. doi: 10.1038/s41580-020-0270-8
    [29]
    CHU W M. Tumor necrosis factor[J]. Cancer Letter,2013,328(2):222−225. doi: 10.1016/j.canlet.2012.10.014
    [30]
    VECCHIÉ A, BONAVENTURA A, TOLDO S, et al. IL-18 and infections: Is there a role for targeted therapies?[J]. Journal of Cellular Physiology,2021,236(3):1638−1657. doi: 10.1002/jcp.30008
    [31]
    LEE S, SEOK B G, LEE S J, et al. Inhibition of mito NEET attenuates LPS-induced inflammation and oxidative stress[J]. Cell Death and Disease,2022,13(2):127. doi: 10.1038/s41419-022-04586-2
    [32]
    HERB M, SCHRAMM M. Functions of ROS in macrophages and antimicrobial immunity[J]. Antioxidants (Basel),2021,10(2):313. doi: 10.3390/antiox10020313
  • Cited by

    Periodical cited type(8)

    1. 姜秀杰,曹禛禛,吴睿喆,邵海益,马鑫悦,魏春红,迟晓星,张东杰. 酸面团中酵母菌的筛选及其在全麦馒头制作中的应用. 黑龙江八一农垦大学学报. 2024(03): 65-71+79 .
    2. 马森,王晓,钱晓洁,孙冰华,李力. 老面馒头风味物质和营养特性研究进展. 河南工业大学学报(自然科学版). 2024(04): 134-142 .
    3. 张艺,韩雅楠,贾紫毅,王成祥,赵鑫燕,高山. 基于高通量测序技术分析工业化老面菌群结构及其对馒头品质的影响. 粮食与油脂. 2024(10): 23-30 .
    4. 刘艳红,康佳茜,肖诗雨,王赛民,周中凯. 益生菌对馒头感官品质及风味的影响. 中国食品学报. 2023(02): 164-172 .
    5. 唐天培,黄自伟,张娜娜,闫博文,赵建新,张灏,陈卫,范大明. 酸面团发酵煎饼对2型糖尿病小鼠的影响. 中国食品学报. 2023(06): 121-131 .
    6. 郭晶斐,贺霞霞,涂建,毛晓楠,周健康,陈宇钒,张丽珍,张国华. 酸面团中优势乳酸菌和酵母菌对麦谷蛋白结构的影响. 中国酿造. 2022(04): 142-146 .
    7. 张国华,贺霞霞,卫晓蓉,赵明利,张越洋. 植物乳杆菌-Gm4发酵制备酸面团粉的工艺优化. 食品工业科技. 2022(11): 228-234 . 本站查看
    8. 潘玲,冮洁,薛晨光,关颖贤. 酸汤子发酵工艺的优化及其品质分析. 食品安全质量检测学报. 2022(24): 7851-7858 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (155) PDF downloads (18) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return