Citation: | WANG Jingru, HE Hongju, ZHU Yadong, et al. Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(14): 312−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090263. |
[1] |
张小莉, 魏玲, 李宝明, 等. 肉制品掺假鉴别技术研究进展[J]. 食品安全质量检测学报,2014,5(10):3190−3196. [ZHANG X, WEI L, LI M, et al. Research progress of identification techniques for meat products adulteration[J]. Journal of Food Safety and Quality,2014,5(10):3190−3196.
ZHANG X, WEI L, LI M. et al. Research progress of identification techniques for meat products adulteration[J]. Journal of Food Safety and Quality, 2014, 5(10): 3190-3196.
|
[2] |
王泳杰, 王之盛, 胡瑞, 等. 不同品种肉牛产肉性能、牛肉营养品质及风味物质的比较[J]. 动物营养学报,2019,31(8):3621−3631. [WANG Y J, WANG Z S, HU R, et al. Comparison of meat performance, nutritional quality and flavor substance in beef of different breeds cattle[J]. Chinese Journal of Animal Nutrition,2019,31(8):3621−3631.
WANG Y J, WANG Z S, HU R, et al. Comparison of meat performance, nutritional quality and flavor substance in beef of different breeds cattle[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3621-3631.
|
[3] |
朱文博, 陈永福. 世界和中国肉类消费及展望[J]. 农业展望,2018,14(3):98−109. [ZHU B W, CHEN Y F. Meat consumption in the world and China and its prospects[J]. Agricultural Outlook,2018,14(3):98−109.
ZHU B W, CHEN Y F. Meat consumption in the world and China and its prospects[J]. Agricultural Outlook, 2018, 14(3): 98-109.
|
[4] |
MANE B G, MENDIRATTA S K, TIWARI A K. Beef specific polymerase chain reaction assay for authentication of meat and meat products[J]. Food Control,2012,28(2):246−249. doi: 10.1016/j.foodcont.2012.05.031
|
[5] |
RADY A, ADEDEJI A A. Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats[J]. Food Analytical Methods,2020,13(4):970−981. doi: 10.1007/s12161-020-01719-1
|
[6] |
夏轩泽, 李言, 钱海峰, 等. 豌豆蛋白乳化性及其改善研究进展[J]. 食品与发酵工业,2021,47(2):279−284. [XIA X Z, LI Y, QIAN H F, et al. Research progress on improvement the emulsification property of pea protein[J]. Food and Fermentation Industries,2021,47(2):279−284.
XIA X Z, LI Y, QIAN H F, et al. Research progress on improvement the emulsification property of pea protein[J]. Food and Fermentation Industries, 2021, 47(2): 279-284.
|
[7] |
CAVIN C, COTTENET G, BLANCPAIN C, et al. Food adulteration: From vulnerability assessment to new analytical solutions[J]. CHIMIA International Journal for Chemistry,2016,70(5):329−333. doi: 10.2533/chimia.2016.329
|
[8] |
MANDLI J, EI FATIMI I, SEDDAOUI N, et al. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat[J]. Food Chemistry,2018,255:380−389. doi: 10.1016/j.foodchem.2018.01.184
|
[9] |
KANG T S, TANAKA T. Comparison of quantitative methods based on SYBR Green real-time qPCR to estimate pork meat adulteration in processed beef products[J]. Food Chemistry,2018,269:549−558. doi: 10.1016/j.foodchem.2018.06.141
|
[10] |
冼钰茵, 易敏英, 张璜, 等. 环介导等温扩增技术快速检测肉及肉制品中的牛源性成分[J]. 食品工业科技,2016,37(7):278−282. [XIAN Y Y, YI M Y, ZHANG H, et al. Development of loop-mediated isothermal amplification (LAMP) method for rapid detection of bovine in meat and meat products[J]. Science and Technology of Food Industry,2016,37(7):278−282.
XIAN Y Y, YI M Y, ZHANG H. Development of loop-mediated isothermal amplification (LAMP) method for rapid detection of bovine in meat and meat products[J]. Science and Technology of Food Industry, 2016, 37(7): 278-282.
|
[11] |
HE H J, SUN D W. Microbial evaluation of raw and processed food products by Visible/Infrared, Raman and Fluorescence spectroscopy[J]. Trends in Food Science & Technology,2015,46:199−210.
|
[12] |
HE H J, SUN D W. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products[J]. Trends in Food Science & Technology,2015,46(1):99−109.
|
[13] |
WANG H, HE H J, MA H J, et al. LW-NIR hyperspectral imaging for rapid prediction of TVC in chicken flesh[J]. International Journal of Agricultural and Biological Engineering,2019,12(3):180−186. doi: 10.25165/j.ijabe.20191203.4444
|
[14] |
何鸿举, 朱亚东, 陈岩, 等. 基于高光谱成像快速检测牛肉糜中大豆分离蛋白掺入量[J]. 食品工业科技,2020,41(20):206−211. [HE H J, ZHU Y D, CHEN Y, et al. Rapid detection of soy protein isolate concentration in minced beef by hyperspectral imaging technology[J]. Science and Technology of Food Industry,2020,41(20):206−211.
HE H J, ZHU Y D, CHEN Y, et al. Rapid detection of soy protein isolate concentration in minced beef by hyperspectral imaging technology[J]. Science and Technology of Food Industry, 2020, 41(20): 206-211.
|
[15] |
KAMRUZZAMAN M, MAKINO Y, OSHITA S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning[J]. Journal of Food Engineering,2016,170:8−15. doi: 10.1016/j.jfoodeng.2015.08.023
|
[16] |
HE H J, SUN D W. Selection of informative spectral wavelength for evaluating and visualising Enterobacteriaceae contamination of salmon flesh[J]. Food Analytical Methods,2015,8(10):2427−2436. doi: 10.1007/s12161-015-0122-x
|
[17] |
WIEDEMAIR V, DE BIASIO M, LEITNER R, et al. Application of design of experiment for detection of meat fraud with a portable Near-Infrared spectrometer[J]. Current Analytical Chemistry,2018,14(1):58−67.
|
[18] |
曾斯杰, 马金爽, 王玥, 等. 基于近红外光谱技术快速检测青金桔果粉中微生物菌数[J]. 海南师范大学学报(自然科学版),2020,33(1):30−35. [ZENG S J, MA J S, WANG Y, et al. Detection of total microorganism counts in kumquat powder by near-infrared spectroscopy[J]. Journal of Hainan Normal University (Natural Science),2020,33(1):30−35.
ZENG S J, MA J S, WANG Y, et al. Detection of total microorganism counts in kumquat powder by near-infrared spectroscopy[J]. Journal of Hainan Normal University (Natural Science), 2020, 33(1): 30-35.
|
[19] |
SHEN X, LIANG X, YE S, et al. Automatic baseline correction method for the open-path Fourier transform infrared spectra by using simple iterative averaging[J]. Optics Express,2018,26(10):A609−A614. doi: 10.1364/OE.26.00A609
|
[20] |
陈亮亮, 朱亚东, 李梦娇, 等. 基于近红外高光谱成像快速预测牛肉中猪肉掺入量[J]. 海南师范大学学报(自然科学版),2022,35(4):402−406. [CHEN L, ZHU Y, LI M, et al. Fast prediction of pork in beef based on near-infrared hyperspectral imaging[J]. Journal of Hainan Normal University (Natural Science),2022,35(4):402−406.
CHEN L, ZHU Y, LI M, et al. Fast prediction of pork in beef based on near-infrared hyperspectral imaging[J]. Journal of Hainan Normal University (Natural Science), 2022, 35(4): 402-406.
|
[21] |
ZHU Y D, HE H J, JIANG S Q, et al. Mining hyperspectral data for non-destructive and rapid prediction of nitrite content in ham sausages[J]. International Journal of Agricultural and Biological Engineering,2021,14(2):182−187. doi: 10.25165/j.ijabe.20211402.5407
|
[22] |
HE H J, CHEN Y, WANG Y, et al. Hyperspectral imaging combined with chemometrics for rapid detection of talcum powder adulterated in wheat flour[J]. Food Control,2023,144:109378. doi: 10.1016/j.foodcont.2022.109378
|
[23] |
HE H J, WANG Y, OU X, et al. Rapid determination of chemical compositions in chicken flesh by mining hyperspectral data[J]. Journal of Food Composition and Analysis,2023,116:105069. doi: 10.1016/j.jfca.2022.105069
|
[24] |
HE H J, WANG Y, ZHANG M, et al. Rapid determination of reducing sugar content in sweet potatoes using NIR spectra[J]. Journal of Food Composition and Analysis,2022,111:104641. doi: 10.1016/j.jfca.2022.104641
|
[25] |
WANG Y Y, HE H J, JIANG S Q, et al. Nondestructive determination of IMP content in chilled chicken based on hyperspectral data combined with chemometrics[J]. International Journal of Agricultural and Biological Engineering,2022,15(1):23−27.
|
[26] |
JIANG S Q, HE H J, MA H J, et al. Quick assessment of chicken spoilage based on hyperspectral NIR spectra combined with partial least squares regression[J]. International Journal of Agricultural and Biological Engineering,2021,14(1):243−250. doi: 10.25165/j.ijabe.20211401.5726
|