WANG Jingru, HE Hongju, ZHU Yadong, et al. Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(14): 312−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090263.
Citation: WANG Jingru, HE Hongju, ZHU Yadong, et al. Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(14): 312−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090263.

Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology

More Information
  • Received Date: September 25, 2022
  • Available Online: May 21, 2023
  • Near-infrared hyperspectral imaging combined with partial least regression (PLSR) models for rapid and non-destructive detection of beef adulterated with pea protein was investigated. The adulteration samples were prepared by mixing pea protein into minced beef with a concentration gradient of 1%~30% (w/w) (interval of 1%), and a total of 93 samples were finally obtained to collect spectral information. After preprocessed by five methods including moving average smoothing (MAS), Gaussian filter smoothing (GFS), baseline correction (BC), Savitzky Golay convolution smoothing (SGCS), and standard normal variable correction (SNV), the spectra were used to construct prediction models by using PLSR algorithm. The regression coefficient (RC), stepwise and successive projections algorithm (SPA) were then used to select optimal wavelength for model optimization. The results showed that the full-band PLSR model constructed by GFS spectra had better prediction performance (R2P=0.87, RMSEP=3.22%, ΔE=1.82, RPD=5.82). The 24 optimal wavelengths including 908.8, 913.7, 918.7, 928.5, 936.8, 945.0, 961.5, 971.3, 994.4, 1017.4, 1033.9, 1099.7, 1135.8, 1167.1, 1196.7, 1211.5, 1453.6, 1549.3, 1607.1, 1633.7, 1660.1, 1678.4, 1683.4 and 1686.7 nm were selected by RC method from the GFS spectra and the original PLSR model optimized with these wavelengths showed better performance (R2P=0.90, RMSEP=2.85%, ΔE=1.13, RPD=6.19). In conclusion, it was possible to use hyperspectral imaging to achieve rapid and non-destructive detection of beef adulterated with pea protein.
  • [1]
    张小莉, 魏玲, 李宝明, 等. 肉制品掺假鉴别技术研究进展[J]. 食品安全质量检测学报,2014,5(10):3190−3196. [ZHANG X, WEI L, LI M, et al. Research progress of identification techniques for meat products adulteration[J]. Journal of Food Safety and Quality,2014,5(10):3190−3196.

    ZHANG X, WEI L, LI M. et al. Research progress of identification techniques for meat products adulteration[J]. Journal of Food Safety and Quality, 2014, 5(10): 3190-3196.
    [2]
    王泳杰, 王之盛, 胡瑞, 等. 不同品种肉牛产肉性能、牛肉营养品质及风味物质的比较[J]. 动物营养学报,2019,31(8):3621−3631. [WANG Y J, WANG Z S, HU R, et al. Comparison of meat performance, nutritional quality and flavor substance in beef of different breeds cattle[J]. Chinese Journal of Animal Nutrition,2019,31(8):3621−3631.

    WANG Y J, WANG Z S, HU R, et al. Comparison of meat performance, nutritional quality and flavor substance in beef of different breeds cattle[J]. Chinese Journal of Animal Nutrition, 2019, 31(8): 3621-3631.
    [3]
    朱文博, 陈永福. 世界和中国肉类消费及展望[J]. 农业展望,2018,14(3):98−109. [ZHU B W, CHEN Y F. Meat consumption in the world and China and its prospects[J]. Agricultural Outlook,2018,14(3):98−109.

    ZHU B W, CHEN Y F. Meat consumption in the world and China and its prospects[J]. Agricultural Outlook, 2018, 14(3): 98-109.
    [4]
    MANE B G, MENDIRATTA S K, TIWARI A K. Beef specific polymerase chain reaction assay for authentication of meat and meat products[J]. Food Control,2012,28(2):246−249. doi: 10.1016/j.foodcont.2012.05.031
    [5]
    RADY A, ADEDEJI A A. Application of hyperspectral imaging and machine learning methods to detect and quantify adulterants in minced meats[J]. Food Analytical Methods,2020,13(4):970−981. doi: 10.1007/s12161-020-01719-1
    [6]
    夏轩泽, 李言, 钱海峰, 等. 豌豆蛋白乳化性及其改善研究进展[J]. 食品与发酵工业,2021,47(2):279−284. [XIA X Z, LI Y, QIAN H F, et al. Research progress on improvement the emulsification property of pea protein[J]. Food and Fermentation Industries,2021,47(2):279−284.

    XIA X Z, LI Y, QIAN H F, et al. Research progress on improvement the emulsification property of pea protein[J]. Food and Fermentation Industries, 2021, 47(2): 279-284.
    [7]
    CAVIN C, COTTENET G, BLANCPAIN C, et al. Food adulteration: From vulnerability assessment to new analytical solutions[J]. CHIMIA International Journal for Chemistry,2016,70(5):329−333. doi: 10.2533/chimia.2016.329
    [8]
    MANDLI J, EI FATIMI I, SEDDAOUI N, et al. Enzyme immunoassay (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat[J]. Food Chemistry,2018,255:380−389. doi: 10.1016/j.foodchem.2018.01.184
    [9]
    KANG T S, TANAKA T. Comparison of quantitative methods based on SYBR Green real-time qPCR to estimate pork meat adulteration in processed beef products[J]. Food Chemistry,2018,269:549−558. doi: 10.1016/j.foodchem.2018.06.141
    [10]
    冼钰茵, 易敏英, 张璜, 等. 环介导等温扩增技术快速检测肉及肉制品中的牛源性成分[J]. 食品工业科技,2016,37(7):278−282. [XIAN Y Y, YI M Y, ZHANG H, et al. Development of loop-mediated isothermal amplification (LAMP) method for rapid detection of bovine in meat and meat products[J]. Science and Technology of Food Industry,2016,37(7):278−282.

    XIAN Y Y, YI M Y, ZHANG H. Development of loop-mediated isothermal amplification (LAMP) method for rapid detection of bovine in meat and meat products[J]. Science and Technology of Food Industry, 2016, 37(7): 278-282.
    [11]
    HE H J, SUN D W. Microbial evaluation of raw and processed food products by Visible/Infrared, Raman and Fluorescence spectroscopy[J]. Trends in Food Science & Technology,2015,46:199−210.
    [12]
    HE H J, SUN D W. Hyperspectral imaging technology for rapid detection of various microbial contaminants in agricultural and food products[J]. Trends in Food Science & Technology,2015,46(1):99−109.
    [13]
    WANG H, HE H J, MA H J, et al. LW-NIR hyperspectral imaging for rapid prediction of TVC in chicken flesh[J]. International Journal of Agricultural and Biological Engineering,2019,12(3):180−186. doi: 10.25165/j.ijabe.20191203.4444
    [14]
    何鸿举, 朱亚东, 陈岩, 等. 基于高光谱成像快速检测牛肉糜中大豆分离蛋白掺入量[J]. 食品工业科技,2020,41(20):206−211. [HE H J, ZHU Y D, CHEN Y, et al. Rapid detection of soy protein isolate concentration in minced beef by hyperspectral imaging technology[J]. Science and Technology of Food Industry,2020,41(20):206−211.

    HE H J, ZHU Y D, CHEN Y, et al. Rapid detection of soy protein isolate concentration in minced beef by hyperspectral imaging technology[J]. Science and Technology of Food Industry, 2020, 41(20): 206-211.
    [15]
    KAMRUZZAMAN M, MAKINO Y, OSHITA S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning[J]. Journal of Food Engineering,2016,170:8−15. doi: 10.1016/j.jfoodeng.2015.08.023
    [16]
    HE H J, SUN D W. Selection of informative spectral wavelength for evaluating and visualising Enterobacteriaceae contamination of salmon flesh[J]. Food Analytical Methods,2015,8(10):2427−2436. doi: 10.1007/s12161-015-0122-x
    [17]
    WIEDEMAIR V, DE BIASIO M, LEITNER R, et al. Application of design of experiment for detection of meat fraud with a portable Near-Infrared spectrometer[J]. Current Analytical Chemistry,2018,14(1):58−67.
    [18]
    曾斯杰, 马金爽, 王玥, 等. 基于近红外光谱技术快速检测青金桔果粉中微生物菌数[J]. 海南师范大学学报(自然科学版),2020,33(1):30−35. [ZENG S J, MA J S, WANG Y, et al. Detection of total microorganism counts in kumquat powder by near-infrared spectroscopy[J]. Journal of Hainan Normal University (Natural Science),2020,33(1):30−35.

    ZENG S J, MA J S, WANG Y, et al. Detection of total microorganism counts in kumquat powder by near-infrared spectroscopy[J]. Journal of Hainan Normal University (Natural Science), 2020, 33(1): 30-35.
    [19]
    SHEN X, LIANG X, YE S, et al. Automatic baseline correction method for the open-path Fourier transform infrared spectra by using simple iterative averaging[J]. Optics Express,2018,26(10):A609−A614. doi: 10.1364/OE.26.00A609
    [20]
    陈亮亮, 朱亚东, 李梦娇, 等. 基于近红外高光谱成像快速预测牛肉中猪肉掺入量[J]. 海南师范大学学报(自然科学版),2022,35(4):402−406. [CHEN L, ZHU Y, LI M, et al. Fast prediction of pork in beef based on near-infrared hyperspectral imaging[J]. Journal of Hainan Normal University (Natural Science),2022,35(4):402−406.

    CHEN L, ZHU Y, LI M, et al. Fast prediction of pork in beef based on near-infrared hyperspectral imaging[J]. Journal of Hainan Normal University (Natural Science), 2022, 35(4): 402-406.
    [21]
    ZHU Y D, HE H J, JIANG S Q, et al. Mining hyperspectral data for non-destructive and rapid prediction of nitrite content in ham sausages[J]. International Journal of Agricultural and Biological Engineering,2021,14(2):182−187. doi: 10.25165/j.ijabe.20211402.5407
    [22]
    HE H J, CHEN Y, WANG Y, et al. Hyperspectral imaging combined with chemometrics for rapid detection of talcum powder adulterated in wheat flour[J]. Food Control,2023,144:109378. doi: 10.1016/j.foodcont.2022.109378
    [23]
    HE H J, WANG Y, OU X, et al. Rapid determination of chemical compositions in chicken flesh by mining hyperspectral data[J]. Journal of Food Composition and Analysis,2023,116:105069. doi: 10.1016/j.jfca.2022.105069
    [24]
    HE H J, WANG Y, ZHANG M, et al. Rapid determination of reducing sugar content in sweet potatoes using NIR spectra[J]. Journal of Food Composition and Analysis,2022,111:104641. doi: 10.1016/j.jfca.2022.104641
    [25]
    WANG Y Y, HE H J, JIANG S Q, et al. Nondestructive determination of IMP content in chilled chicken based on hyperspectral data combined with chemometrics[J]. International Journal of Agricultural and Biological Engineering,2022,15(1):23−27.
    [26]
    JIANG S Q, HE H J, MA H J, et al. Quick assessment of chicken spoilage based on hyperspectral NIR spectra combined with partial least squares regression[J]. International Journal of Agricultural and Biological Engineering,2021,14(1):243−250. doi: 10.25165/j.ijabe.20211401.5726
  • Cited by

    Periodical cited type(11)

    1. 刘建凤,曹宏,汪兴海,张甜,姚立志,肖欢. 辐照技术在提升盐水鹅卫生安全中的应用. 中国家禽. 2025(02): 137-142 .
    2. 游云,黄晓霞,肖斯立,刘巧瑜,蓝碧锋,胡昕,吴俊师,杨娟,曾晓房. 反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用. 食品科学. 2024(08): 228-237 .
    3. 冯文豪,崔龙,刘瑞新,陈云堂,李庆鹏,宋莲军,彭乃卫,王娴. 辐照对中药材有效成分的影响研究概述. 核农学报. 2024(07): 1335-1342 .
    4. 贾世亮,张越,刘关成,尹宇浩,杜心远,丁玉庭,周绪霞. 流态冰预冷技术及其在冷鲜食品中的应用研究进展. 食品与发酵工业. 2024(12): 388-395 .
    5. 曾庆,马昊鑫,陈秋月,陈桂斌,王林果,张鹏程,贾溅琳,张崟. 新冻藏技术在肉原料及其制品中的应用研究进展. 食品研究与开发. 2024(12): 197-201 .
    6. 缪承杜,温晓梅,蓝碧锋,吴俊师,罗鹏宇,梁淑敏. 辐照协同复配保鲜剂对生鲜鸡肉的保鲜效果研究. 食品科技. 2024(05): 107-114 .
    7. 郑文雄,杨榕琳,高泽欣,古盛辉,刘晓璇,白卫东,任文彬. 鸡肉防腐保鲜方法及鲜度检测新技术研究进展. 中国食品添加剂. 2024(07): 209-216 .
    8. 孙少振,马霖源,孙磊,王金菊,刘霞,苏伟东. 辐照技术在粮食贮藏中的研究进展. 农产品加工. 2024(18): 121-123+129 .
    9. 杨雷. 烘焙食品防腐保鲜方法及鲜度检测新技术的研究. 现代食品. 2024(18): 72-74 .
    10. 黄晓霞,游云,刘巧瑜,董浩,曾宪军,李湘銮,钱敏,曾晓房. 不同剂量~(60)Co-γ射线辐照对烟鸡胸肉贮藏过程中滋味的影响. 食品安全质量检测学报. 2023(07): 56-64 .
    11. 陈妙玲,徐玉清,胡璐璐,王磊,罗桂贤,邱亚群,方泽坤,钟娥秋,刘宵宵,兰文升,扈庆华,李迎慧. 电子束辐照对不同载体上两种微生物的消毒效果研究. 现代预防医学. 2023(21): 3965-3968+3990 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (132) PDF downloads (15) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return