ZHOU Zhou, DU Xianfeng, CAO Meng, et al. Effects of Freezing Temperature and Freezing Center Temperature on the Quality of Frozen Dough Noodles[J]. Science and Technology of Food Industry, 2023, 44(14): 88−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090231.
Citation: ZHOU Zhou, DU Xianfeng, CAO Meng, et al. Effects of Freezing Temperature and Freezing Center Temperature on the Quality of Frozen Dough Noodles[J]. Science and Technology of Food Industry, 2023, 44(14): 88−94. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090231.

Effects of Freezing Temperature and Freezing Center Temperature on the Quality of Frozen Dough Noodles

More Information
  • Received Date: September 21, 2022
  • Available Online: May 14, 2023
  • Frozen dough technology is widely used in the industrial production of flour products, however, frozen dough technology in the application process will still be flawed, resulting in frozen dough and final product quality deterioration. In this study, differential scanning calorimetry (DSC) was used to analyze the changes of thermal characteristics during dough freezing. The effects of different freezing temperatures and freezing center temperatures on the quality of frozen dough and final noodles were studied to determine the optimal freezing temperature and freezing center temperature. The results showed that compared with −20 ℃, the freezing rates of −30 and −40 ℃ were −0.44 and −0.51 ℃·min−1, respectively, with faster freezing rates, shorter freezing time for the central temperature to drop to −18 ℃, shortest time to pass through the maximum ice crystal generation zone, and smaller and more uniform ice crystal volume formed. The frozen water content of dough and the cooking loss rate of noodles decreased to the lowest at −30 ℃. Under the freezing conditions of −30 and −40 ℃, there was no significant difference in water absorption and sensory score (P>0.05). The shear force, hardness, elasticity and chewiness of noodles reached the maximum at −30 ℃ with the decrease of freezing temperature, while there was no significant difference in adhesion (P>0.05). At the freezing center temperature of −18 ℃, the frozen water content of frozen dough was the least, the cooking loss rate, water absorption rate of frozen dough noodles were the lowest, the texture characteristics were the best, and the sensory score was the highest. This study would provide a reference for improving the quality of frozen noodle dough in industry.
  • [1]
    张云焕, 赵文华, 马军涛, 等. 速冻面制食品品质改良剂的研究进展[J]. 食品与发酵工业,2017,43(4):295−302. [ZHANG Y H, ZHAO W H, MA J T, et al. Research progress of quality improvers for frozen flour food[J]. Food and Fermentation Industry,2017,43(4):295−302.

    ZHANG Y H, ZHAO W H, MA J T, et al. Research progress of quality improvers for frozen flour food[J]. Food and Fermentation Industry, 2017, 43(4): 295-302.
    [2]
    王秋玉. 冻融循环对预发酵冷冻生坯豆沙包品质劣变规律研究[D]. 扬州: 扬州大学, 2022.

    WANG Q. Study on the effect of freeze-thaw cycle on the quality deterioration of pre-fermented frozen green beans[D]. Yangzhou: Yangzhou University, 2022.
    [3]
    陈丽. 冷冻对非发酵面团水分状态和冰晶形态的影响[D]. 北京: 中国农业科学院, 2021.

    CHEN L. Effect of freezing on moisture state and ice crystal morphology of non-fermented dough[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
    [4]
    JACKEL S S. Frozen dough opportunities keep heating up[J]. Cereal Foods World, 1991.
    [5]
    白妮. 冷冻生胚油条的品质劣变机理及改良研究[D]. 无锡: 江南大学, 2022.

    BAI N. Study on the quality deterioration mechanism and improvement of frozen raw embryo fried dough sticks[D]. Wuxi: Jiangnan University, 2022.
    [6]
    MEZIANI S, IOANNOU I, JASNIEWSKI J, et al. Effects of freezing treatments on the fermentative activity and gluten network integrity of sweet dough[J]. LWT-Food Science and Technology,2012,46(1):118−126. doi: 10.1016/j.lwt.2011.10.017
    [7]
    YANG J, ZHANG B, ZHANG Y, et al. Effect of freezing rate and frozen storage on the rheological properties and protein structure of non-fermented doughs[J]. Journal of Food Engineering,2021,293:110377. doi: 10.1016/j.jfoodeng.2020.110377
    [8]
    郑子懿. 冷冻面条在储藏期间的品质变化研究[D]. 郑州: 河南工业大学, 2013.

    ZHEN Z Y. Study on the quality change of frozen noodles during storage[D]. Zhengzhou: Henan University of Technology, 2013.
    [9]
    KONDAKCI T, ZHANG J W, ZHOU W. Impact of flour protein content and freezing conditions on the quality of frozen dough and corresponding steamed bread[J]. Food & Bioprocess Technology,2015,8(9):1877−1889.
    [10]
    中华人民共和国商业行业标准. LS/T 3202-1993面条用小麦粉[S]. 北京: 中国标准出版社, 1993.

    The People 's Republic of China commercial industry standards. LS/T 3202-1993 Wheat flour for noodles[S]. Beijing: China Standard Press, 1993.
    [11]
    杨静洁, 张波, 张影全, 等. 冷冻温度对非发酵面团蛋白质结构及面团特性的影响[J]. 中国粮油学报,2020,35(5):11−17. [YANG J J, ZHANG B, ZHANG Y Q, et al. Effect of freezing temperature on the protein structure and dough characteristics of non-fermented dough[J]. China Journal of Grain and Oil,2020,35(5):11−17.

    YANG J J, ZHANG B, ZHANG Y Q, et al. Effect of freezing temperature on the protein structure and dough characteristics of non-fermented dough[J]. China Journal of Grain and Oil, 2020, 35(5): 11-17.
    [12]
    MEZIANI S, JASNIEWSKI J, GAIANI C, et al. Effects of freezing treatments on viscoelastic and structural behavior of frozen sweet dough[J]. Journal of Food Engineering,2011,107(3-4):358−365. doi: 10.1016/j.jfoodeng.2011.07.003
    [13]
    CHOONGJIN, YOON, SANGEUN, et al. Effects of freezing rate and terminal freezing temperature on frozen croissant dough quality[J]. LWT-Food Science & Technology,2016,73:219−225.
    [14]
    徐云峰. 复配乳化剂提高酵母抗冻性及改善冷冻面团品质的研究[D]. 无锡: 江南大学, 2010.

    XU Y F. Study on the improvement of yeast antifreeze and the quality of frozen dough by compound emulsifier[D]. Wuxi: Jiangnan University, 2010.
    [15]
    文三彬. 煮制对面条中蛋白质及食用品质的影响[D]. 郑州: 河南工业大学, 2015.

    WEN S B. Effects of cooking on protein and edible quality of noodles[D]. Zhengzhou: Henan University of Technology, 2015.
    [16]
    闫美姣, 李云龙, 李红梅, 等. 高杂粮含量面条制作的工艺优化[J]. 现代食品科技,2020,255(11):194−201. [YAN M J, LI Y L, LI H M. Process optimization of noodles with high grain content[J]. Modern Food Technology,2020,255(11):194−201.

    YAN M J, LI Y L, LI H M. Process optimization of noodles with high grain content[J]. Modern Food Technology, 2020, 255(11): 194-201.
    [17]
    程强. 冰晶形成和水分迁移影响冷冻酸面团中乳酸菌活力的研究[D]. 郑州: 河南工业大学, 2021.

    CHENG Q. Study on the effect of ice crystal formation and water migration on the activity of lactic acid bacteria in frozen sourdough[D]. Zhengzhou: Henan University of Technology, 2021.
    [18]
    周泓伶. 磁场冻藏改善冷冻面团及其面包品质的机理探索[D]. 无锡: 江南大学, 2022.

    ZHOU H L. Exploring the mechanism of magnetic field freezing to improve the quality of frozen dough and bread[D]. Wuxi: Jiangnan University, 2022.
    [19]
    ZHOU H, JIN Y, HONG T, et al. Effect of static magnetic field on the quality of frozen bread dough[J]. LWT-Food Science and Technology,2022,50(12):1−9.
    [20]
    秦跃奇. 冷冻和贮藏温度对馒头品质的影响及机理研究[D]. 新乡: 河南科技学院, 2022.

    QIN Y Q. Effect of freezing and storage temperature on the quality of steamed bread and its mechanism[D]. Xinxiang: Henan University of Science and Technology, 2022.
    [21]
    BALD J, BORJA A, MUXIKA I, et al. Assessing reference conditions and physico-chemical status according to the European Water Framework Directive: A case-study from the Basque Country (Northern Spain)[J]. Marine Pollution Bulletin,2005,50(12):1508−1522. doi: 10.1016/j.marpolbul.2005.06.019
    [22]
    VAN DER SMAN R G M, VODA A, VAN DALEN G, et al. Ice crystal interspacing in frozen foods[J]. Journal of Food Engineering,2013,116(2):622−626. doi: 10.1016/j.jfoodeng.2012.12.045
    [23]
    王亚运. 冷冻玉米面条加工技术及冻藏期间品质变化的研究[D]. 郑州: 河南农业大学, 2016.

    WANG Y Y. Study on processing technology of frozen corn noodles and quality changes during frozen storage[D]. Zhengzhou: Henan Agricultural University, 2016.
    [24]
    贺亿杰. 魔芋葡甘聚糖对冷冻面筋蛋白特性及冷冻馒头品质的影响[D]. 新乡: 河南科技大学, 2019.

    HE Y J. Effects of konjac glucomannan on the properties of frozen gluten and the quality of frozen steamed bread[D]. Xinxiang: Henan University of Science and Technology, 2019.
    [25]
    PETITOT M, BOYER L, MINIER C, et al. Fortification of pasta with split pea and faba bean flours: Pasta processing and quality evaluation[J]. Food Research International,2010,43(2):634−641. doi: 10.1016/j.foodres.2009.07.020
    [26]
    田萍萍. 小麦粉特性对速冻熟制面条在冻结及保藏期间品质的影响[D]. 郑州: 河南农业大学, 2017.

    TIAN P P. Effect of wheat flour characteristics on the quality of frozen cooked noodles during freezing and preservation[D]. Zhengzhou: Henan Agricultural University, 2017.
    [27]
    BAIER-SCHENK A, HANDSCHIN S, SCH NAU M V, et al. In situ observation of the freezing process in wheat dough by confocal laser scanning microscopy (CLSM): Formation of ice and changes in the gluten network[J]. Journal of Cereal Science,2005,42(2):255−260. doi: 10.1016/j.jcs.2005.04.006
    [28]
    LI Y, ZHANG Y, LIU X, et al. Effect of ultrasound-assisted freezing on the textural characteristics of dough and the structural characterization of wheat gluten[J]. Journal of Food Science and Technology,2019,56(7):3380−3390. doi: 10.1007/s13197-019-03822-6
    [29]
    董轩. 冷冻熟制型兰州拉面制面工艺研究[D]. 扬州: 扬州大学, 2019.

    DONG X. Research on the processing technology of frozen cooked Lanzhou noodles[D]. Yangzhou: Yangzhou University, 2019.
  • Related Articles

    [1]GAO Jingyao, LÜ Xinmeng, ZHOU Zhi, XIONG Guangquan, WANG Lan, WU Wenjin, SHI Liu, LIU Bin, HUANG Yun, ZHONG Xuefen, QIAN Leiming. Research Progress on the Application of Non-thermophysical Technology and Natural Antibacterial Agents on the Preservation of Chilled Livestock and Poultry Meat Products[J]. Science and Technology of Food Industry, 2025, 46(7): 405-414. DOI: 10.13386/j.issn1002-0306.2024040140
    [2]WANG Erlei, HUANG Jiaying, DUAN Haizhang, XU Caina. Progress on the Stabilization Technology of Anthocyanins and the Application Prospects[J]. Science and Technology of Food Industry, 2024, 45(18): 394-403. DOI: 10.13386/j.issn1002-0306.2023100250
    [3]YANG Yi, JIANG Baojie, WANG Zhen, LI Li, WANG Xin, SUN Jilu, SHAO Juanjuan. Research Progress on Biological Activity and Application of Marine Animal Polysaccharides[J]. Science and Technology of Food Industry, 2024, 45(16): 418-424. DOI: 10.13386/j.issn1002-0306.2023090217
    [4]YOU Xiaopeng, CHEN Zhixian. Nutrients, Functions and Application Prospects of Yeast Protein in Sports Nutrition Foods[J]. Science and Technology of Food Industry, 2024, 45(8): 366-371. DOI: 10.13386/j.issn1002-0306.2023050169
    [5]JIANG Xiaochen, HUO Yingjiao, DONG Shiyuan. Research Progress in the Application of High Voltage Electrostatic Technology in Meat, Fruit, and Vegetable Preservation[J]. Science and Technology of Food Industry, 2023, 44(17): 447-453. DOI: 10.13386/j.issn1002-0306.2022110063
    [6]DONG Juncen, GAO Sunan, CHEN Jianchu. Application Progress and Prospect of Light-emitting Diode Light Technology in Food Preservation[J]. Science and Technology of Food Industry, 2021, 42(16): 374-380. DOI: 10.13386/j.issn1002-0306.2020080116
    [7]TANG Min-min, WANG Hong-yi, LIU Fang, ZHU Yong-zhi, WANG Dao-ying, XU Wei-min, SUN Zhi-lan. Mechanism of Nano-embedding Technology of Plant Essential Oil and Its Application in Meat Preservation[J]. Science and Technology of Food Industry, 2020, 41(21): 345-350. DOI: 10.13386/j.issn1002-0306.2020020013
    [8]WANG Yan-sheng, ZHAI Xia-qiu, ZHENG Xiao-guang, GONG Zhi-qing, CUI Wen-jia, JIA Feng-juan, WANG Wen-liang. Application Prospects and Research Hotspots of Edible Fungi Proteins[J]. Science and Technology of Food Industry, 2019, 40(10): 339-344. DOI: 10.13386/j.issn1002-0306.2019.10.055
    [9]XU Li-jing, GAO Li-pu, WANG Qing, ZUO Jin-hua. The application of the irradiation technology in Agaricus bisporus preservation[J]. Science and Technology of Food Industry, 2014, (09): 392-395. DOI: 10.13386/j.issn1002-0306.2014.09.078
    [10]WANG Li-ming, MA Ning, LI Song, WANG Chun-ling, LIU Jing-xin. Nutritional properties of quinoa and its application prospects[J]. Science and Technology of Food Industry, 2014, (01): 381-384. DOI: 10.13386/j.issn1002-0306.2014.01.007
  • Cited by

    Periodical cited type(11)

    1. 刘建凤,曹宏,汪兴海,张甜,姚立志,肖欢. 辐照技术在提升盐水鹅卫生安全中的应用. 中国家禽. 2025(02): 137-142 .
    2. 游云,黄晓霞,肖斯立,刘巧瑜,蓝碧锋,胡昕,吴俊师,杨娟,曾晓房. 反向传播-人工神经网络在辐照黑椒牛肉品质预测中的应用. 食品科学. 2024(08): 228-237 .
    3. 冯文豪,崔龙,刘瑞新,陈云堂,李庆鹏,宋莲军,彭乃卫,王娴. 辐照对中药材有效成分的影响研究概述. 核农学报. 2024(07): 1335-1342 .
    4. 贾世亮,张越,刘关成,尹宇浩,杜心远,丁玉庭,周绪霞. 流态冰预冷技术及其在冷鲜食品中的应用研究进展. 食品与发酵工业. 2024(12): 388-395 .
    5. 曾庆,马昊鑫,陈秋月,陈桂斌,王林果,张鹏程,贾溅琳,张崟. 新冻藏技术在肉原料及其制品中的应用研究进展. 食品研究与开发. 2024(12): 197-201 .
    6. 缪承杜,温晓梅,蓝碧锋,吴俊师,罗鹏宇,梁淑敏. 辐照协同复配保鲜剂对生鲜鸡肉的保鲜效果研究. 食品科技. 2024(05): 107-114 .
    7. 郑文雄,杨榕琳,高泽欣,古盛辉,刘晓璇,白卫东,任文彬. 鸡肉防腐保鲜方法及鲜度检测新技术研究进展. 中国食品添加剂. 2024(07): 209-216 .
    8. 孙少振,马霖源,孙磊,王金菊,刘霞,苏伟东. 辐照技术在粮食贮藏中的研究进展. 农产品加工. 2024(18): 121-123+129 .
    9. 杨雷. 烘焙食品防腐保鲜方法及鲜度检测新技术的研究. 现代食品. 2024(18): 72-74 .
    10. 黄晓霞,游云,刘巧瑜,董浩,曾宪军,李湘銮,钱敏,曾晓房. 不同剂量~(60)Co-γ射线辐照对烟鸡胸肉贮藏过程中滋味的影响. 食品安全质量检测学报. 2023(07): 56-64 .
    11. 陈妙玲,徐玉清,胡璐璐,王磊,罗桂贤,邱亚群,方泽坤,钟娥秋,刘宵宵,兰文升,扈庆华,李迎慧. 电子束辐照对不同载体上两种微生物的消毒效果研究. 现代预防医学. 2023(21): 3965-3968+3990 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (156) PDF downloads (15) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return