Citation: | WANG Rongrong, QIAN Yilin, TANG Zhixin, et al. Physicochemical Characterization and in Vivo Hypolipidemic Effect of Chitosan-Coated Nuciferine Liposomes[J]. Science and Technology of Food Industry, 2023, 44(7): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090226. |
[1] |
ZHENG H, HAN L, SHI W, et al. Research advances in lotus leaf as chinese dietary herbal medicine[J]. The American Journal of Chinese Medicine,2022,50(6):1423−1445. doi: 10.1142/S0192415X22500616
|
[2] |
YU Y, LU J, SUN L, et al. Akkermansia muciniphila: A potential novel mechanism of nuciferine to improve hyperlipidemia[J]. Biomedicine & Pharmacotherapy,2021:133.
|
[3] |
ZHANG L N, GAO J H, TANG P, et al. Nuciferine inhibits LPS-induced inflammatory response in BV2 cells by activating PPAR-gamma[J]. International Immunopharmacology,2018,63:9−13. doi: 10.1016/j.intimp.2018.07.015
|
[4] |
QI Q, LI R, LI H Y, et al. Identification of the anti-tumor activity and mechanisms of nuciferine through a network pharmacology approach[J]. Acta Pharmacologica Sinica,2016,37(7):963−972. doi: 10.1038/aps.2016.53
|
[5] |
CHEN H W, YANG M Y, HUNG T W, et al. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats[J]. Journal of Food and Drug Analysis,2019,27(3):736−748. doi: 10.1016/j.jfda.2018.12.009
|
[6] |
MA C, LI G, HE Y, et al. Pronuciferine and nuciferine inhibit lipogenesis in 3T3-L1 adipocytes by activating the AMPK signaling pathway[J]. Life Sciences,2015,136:120−125. doi: 10.1016/j.lfs.2015.07.001
|
[7] |
XU H, LU X, GUO X, et al. Distinct AMPK-mediated FAS/HSL pathway is implicated in the alleviating effect of nuciferine on obesity and hepatic steatosis in hfd-fed mice[J]. Nutrients,2022,14(9):25−46.
|
[8] |
PAN S Z. Study on effect of alkaloid salt from lotus leaf on preventing of diet-induced obesity and modulation of gut microbiota in mice [D]. Zhejiang: Zhejiang University, 2019.
|
[9] |
WANG Y X, LIU B, SHI R B, et al. Determination of nuciferine in Beagle dog by RP-HPLC and research on its pharmacokinetics[J]. Chinese Journal of Pharmaceutical Analysis,2008,28(9):1418−1421.
|
[10] |
WANG F G, CAO J, HOU X Q, et al. Pharmacokinetics, tissue distribution, bioavailability, and excretion of nuciferine, an alkaloid from lotus, in rats by LC/MS/MS[J]. Drug Development and Industrial Pharmacy,2018,44(9):1557−1562. doi: 10.1080/03639045.2018.1483399
|
[11] |
XIE Y L, WANG Y Y, TAN Y X, et al. Study on absolute bioavailability of nuciferine in rats[J]. Journal of Guangdong Pharmaceutical University,2010,26(01):17−19.
|
[12] |
COLLIER M A, BACHELDER E M, AINSLIE K M. Electrosprayed myocet-like liposomes: An alternative to traditional liposome production[J]. Pharmaceutical Research,2017,34(2):419−426. doi: 10.1007/s11095-016-2072-4
|
[13] |
SEBAALY C, HAYDAR S, GREIGE-GERGES H. Eugenol encapsulation into conventional liposomes and chitosan-coated liposomes: A comparative study[J]. Journal of Drug Delivery Science and Technology,2022:67.
|
[14] |
HE H S, LU Y, QI J P, et al. Adapting liposomes for oral drug delivery[J]. Acta Pharmaceutica Sinica B,2019,9(1):36−48. doi: 10.1016/j.apsb.2018.06.005
|
[15] |
TAI K D, RAPPOLT M, MAO L K, et al. The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan[J]. Food Hydrocolloids,2020:99.
|
[16] |
TIAN M, HAN J, YE A, et al. Structural characterization and biological fate of lactoferrin-loaded liposomes during simulated infant digestion[J]. Journal of the Science of Food and Agriculture,2019,99(6):2677−2684. doi: 10.1002/jsfa.9435
|
[17] |
WANG W, TAN X M. Study on the determination of total alkaloid content of lotus leaves[J]. Journal of Chinese Medicinal Materials,2004(1):50−51.
|
[18] |
BONECHI C, TAMASI G, DONATI A, et al. Physicochemical characterization of hyaluronic acid and chitosan liposome coatings[J]. Applied Sciences-Basel, 2021, 11(24).
|
[19] |
EFIMOVA A A, MULASHKIN F D, RUDENSKAYA G N, et al. Biodegradable electrostatic complexes of chitosan cationic microparticles and anionic liposomes[J]. Polymer Science, Series B,2018,60(1):84−90. doi: 10.1134/S1560090418010037
|
[20] |
MANCONI M, MANCA M L, VALENTI D, et al. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin[J]. International Journal of Pharmaceutics,2017,525(1):203−210. doi: 10.1016/j.ijpharm.2017.04.044
|
[21] |
KHOERUNNISA F, NURHAYATI M, DARA F, et al. Physicochemical properties of tpp-crosslinked chitosan nanoparticles as potential antibacterial agents[J]. Fibers and Polymers,2021,22(11):2954−2964. doi: 10.1007/s12221-021-0397-z
|
[22] |
LIU W L, HOU Y Y, JIN Y Y, et al. Research progress on liposomes: Application in food, digestion behavior and absorption mechanism[J]. Trends in Food Science & Technology,2020,104:177−189.
|
[23] |
WANG Y, ZHANG W, REIMER B, et al. The effect of feedback on attitudes toward cellular phone use while driving: A comparison between novice and experienced drivers[J]. Traffic Injury Prevention,2010,11(5):471−477. doi: 10.1080/15389588.2010.495761
|
[24] |
CHO Y A, KIM J. Effect of probiotics on blood lipid concentrations a meta-analysis of randomized controlled trials[J]. Medicine,2015,94(43):6371−6384.
|
[25] |
BACKHED F, MANCHESTER J K, SEMENKOVICH C F, et al. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104(3):979−984. doi: 10.1073/pnas.0605374104
|
[26] |
CURAT C A, MIRANVILLE A, SENGENÈS C, et al. From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes[J]. Diabetes,2004,53(5):1285−1292. doi: 10.2337/diabetes.53.5.1285
|
[27] |
BALLANTYNE C M, OLSSON A G, COOK T J, et al. Influence of low high-density lipoprotein cholesterol and elevated triglyceride on coronary heart disease events and response to simvastatin therapy in 4S[J]. Circulation,2001,104(25):3046−3051. doi: 10.1161/hc5001.100624
|
[28] |
SMITH B J, MILLER R A, SCHMIDT T M. Muribaculaceae genomes assembled from metagenomes suggest genetic drivers of differential response to acarbose treatment in mice[J]. Msphere,2021,6(6):78−92.
|
[29] |
SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism[J]. Reviews in Endocrine and Metabolic Disorders,2019,20(4):461−472. doi: 10.1007/s11154-019-09512-0
|
[30] |
JUST S, MONDOT S, ECKER J, et al. The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism[J]. Microbiome,2018,6(1):134. doi: 10.1186/s40168-018-0510-8
|
[31] |
GAO X, JIA R, XIE L, et al. A study of the correlation between obesity and intestinal flora in school-age children[J]. Scientific Reports,2018,8(1):14511. doi: 10.1038/s41598-018-32730-6
|
[32] |
TURNBAUGH P J, LEY R E, MAHOWALD M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027−1031. doi: 10.1038/nature05414
|
[33] |
LI Y, LI N, LIU J, et al. Gegen qinlian decoction alleviates experimental colitis and concurrent lung inflammation by inhibiting the recruitment of inflammatory myeloid cells and restoring microbial balance[J]. J Inflamm Res,2022,15:1273−1291. doi: 10.2147/JIR.S352706
|