Citation: | LI Jiong, WU Qiong, JIANG Hai, et al. Identification of Adulterated Animal-derived Ingredients in Edible Animal Viscera Based on Capillary Gel Electrophoresis and DNA Barcoding Techniques[J]. Science and Technology of Food Industry, 2023, 44(15): 329−336. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090211. |
[1] |
王学平. 畜禽产品加工的综合利用发展趋势[J]. 肉类研究,2008(11):11−14. [WANG X P. The comprehensive utilization of the livestock and poultry products processing[J]. Meat Research,2008(11):11−14. doi: 10.3969/j.issn.1001-8123.2008.11.006
WANG X P. The comprehensive utilization of the livestock and poultry products processing[J]. Meat Research, 2008, (11): 11-14. doi: 10.3969/j.issn.1001-8123.2008.11.006
|
[2] |
王晓雄. 吃动物内脏的好与坏[J]. 安全与健康,2017(12):51. [WANG X X. The benefits and disadvantages of eating animal viscera[J]. Safety & Health,2017(12):51.
WANG X X. The benefits and disadvantages of eating animal viscera[J]. Safety & Health, 2017, (12): 51.
|
[3] |
张文文, 梅娜娜, 钤莉妍, 等. 驴肝与猪肝、鸡肝和鹅肝之间的营养成分比较[J]. 食品安全质量检测学报,2018,9(16):4435−4439. [ZHANG W W, MEI N N, QIAN L Y, et al. Comparison of nutrients between donkey liver and pig liver, chicken liver and goose liver[J]. Journal of Food Safety & Quality,2018,9(16):4435−4439. doi: 10.3969/j.issn.2095-0381.2018.16.041
ZHANG W W, MEI N N, QIAN L Y, et al. Comparison of nutrients between donkey liver and pig liver, chicken liver and goose liver [J]. Journal of Food Safety & Quality, 2018, 9(16): 4435-4439. doi: 10.3969/j.issn.2095-0381.2018.16.041
|
[4] |
李珮斯, 苏永祺, 郭新东, 等. 微波消解-电感耦合等离子体质谱法测定动物内脏中金属元素含量[J]. 安徽农业科学,2013,41(21):8915−8917. [LI P S, SU Y Q, GUO X D, et al. Content determination of metal elements in animal viscera by microwave digestion-inductively coupled plasma mass spectrometry[J]. Journal of Anhui Agricultural Sciences,2013,41(21):8915−8917. doi: 10.3969/j.issn.0517-6611.2013.21.037
LI P S, SU Y Q, GUO X D, et al. Content determination of metal elements in animal viscera by microwave digestion-inductively coupled plasma mass spectrometry [J]. Journal of Anhui Agricultural Sciences, 2013, 41(21): 8915-8917. doi: 10.3969/j.issn.0517-6611.2013.21.037
|
[5] |
林竹光, 孙若男, 张莉莉, 等. 气相色谱-质谱法同时测定动物内脏中的14种酞酸酯类环境激素残留[J]. 色谱,2008(3):280−284. [LIN Z G, SUN R N, ZHANG L L, et al. Simultaneous determination of 14 phthalate ester residues in animal innards by gas chromatography-mass spectrometry with electron impact ionization[J]. Chinese Journal of Chromatography,2008(3):280−284. doi: 10.3321/j.issn:1000-8713.2008.03.003
LIN Z G, SUN R N, ZHANG L L, et al. Simultaneous determination of 14 phthalate ester residues in animal innards by gas chromatography-mass spectrometry with electron impact ionization [J]. Chinese Journal of Chromatography, 2008, (3): 280-284. doi: 10.3321/j.issn:1000-8713.2008.03.003
|
[6] |
魏法山, 巩阿娜, 谢文佳, 等. 我国畜禽内脏食用安全指标检测分析[J]. 食品安全质量检测学报,2017,8(9):3667−3673. [WEI F S, GONG A N, XIE W J, et al. Detection and analysis of edible safety of livestock and poultry viscera in China[J]. Journal of Food Safety & Quality,2017,8(9):3667−3673. doi: 10.3969/j.issn.2095-0381.2017.09.066
WEI F S, GONG A N, XIE W J, et al. Detection and analysis of edible safety of livestock and poultry viscera in China [J]. Journal of Food Safety & Quality, 2017, 8(9): 3667-3673. doi: 10.3969/j.issn.2095-0381.2017.09.066
|
[7] |
ERBAN T, SHCHERBACHENKO E, TALACKO P, et al. A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey[J]. Journal of Proteomics,2021,239:104157. doi: 10.1016/j.jprot.2021.104157
|
[8] |
KRITIKOU A S, AALIZADEH R, DAMALAS D E, et al. MALDI-TOF-MS integrated workflow for food authenticity investigations: An untargeted protein-based approach for rapid detection of PDO feta cheese adulteration[J]. Food Chemistry,2022,370:131057. doi: 10.1016/j.foodchem.2021.131057
|
[9] |
MONTOWSKA M, FORNAL E. Absolute quantification of targeted meat and allergenic protein additive peptide markers in meat products[J]. Food Chemistry,2019,274:857−864. doi: 10.1016/j.foodchem.2018.08.131
|
[10] |
LECRENIER M C, MARIEN A, VEYS P, et al. Inter-laboratory study on the detection of bovine processed animal protein in feed by LC-MS/MS-based proteomics[J]. Food Control,2021,125:107944. doi: 10.1016/j.foodcont.2021.107944
|
[11] |
FORNAL E, MONTOWSKA M. Species-specific peptide-based liquid chromatography–mass spectrometry monitoring of three poultry species in processed meat products[J]. Food Chemistry,2019,285:489−498.
|
[12] |
HAO X K, FU L L, SHAO L L, et al. Quantification of major milk proteins using ultra-performance liquid chromatography tandem triple quadrupole mass spectrometry and its application in milk authenticity analysis[J]. Food Control,2022,131:108455. doi: 10.1016/j.foodcont.2021.108455
|
[13] |
COTTENET G, BLANCPAIN C, CHUAH P F, et al. Evaluation and application of a next generation sequencing approach for meat species identification[J]. Food Control,2020,110:107003. doi: 10.1016/j.foodcont.2019.107003
|
[14] |
GALAL-KHALLAF A. Multiplex PCR and 12S rRNA gene sequencing for detection of meat adulteration: A case study in the Egyptian markets[J]. Gene,2021,764:145062. doi: 10.1016/j.gene.2020.145062
|
[15] |
WANG N, XING R R, ZHOU M Y, et al. Application of DNA barcoding and metabarcoding for species identification in salmon products[J]. Food Additives & Contaminants,2021,38(5):754−768.
|
[16] |
CAOBY H, ZHENG K Z, JIANG J F, et al. A novel method to detect meat adulteration by recombinase polymerase amplification and SYBR green I[J]. Food Chemistry,2018,266:73−78. doi: 10.1016/j.foodchem.2018.05.115
|
[17] |
KANG T S, TANAKA T. Comparison of quantitative methods based on SYBR Green real-time qPCR to estimate pork meat adulteration in processed beef products[J]. Food Chemistry,2018,269:549−558. doi: 10.1016/j.foodchem.2018.06.141
|
[18] |
QUINTO C A, TINOCO R, HELLBERG R S. DNA barcoding reveals mislabeling of game meat species on the U. S. commercial market[J]. Food Control,2016,59:386−392. doi: 10.1016/j.foodcont.2015.05.043
|
[19] |
ZIA Q, ALAWAMI M, MOKHTAR N F, et al. Current analytical methods for porcine identification in meat and meat products[J]. Food Chemistry,2020,324:126664. doi: 10.1016/j.foodchem.2020.126664
|
[20] |
XING R R, HU R R, HAN J X, et al. DNA barcoding and mini-barcoding in authenticating processed animal-derived food: A case study involving the Chinese market[J]. Food Chemistry,2020,309:125653. doi: 10.1016/j.foodchem.2019.125653
|
[21] |
AHMED N, SANGALE D, TIKNAIK A, et al. Authentication of origin of meat species processed under various Indian culinary procedures using DNA barcoding[J]. Food Control, 2018, 90: 259−265.
|
[22] |
KANE D E, HELLBERG R S. Identification of species in ground meat products sold on the U. S. commercial market using DNA-based methods[J]. Food Control,2016,59:158−163. doi: 10.1016/j.foodcont.2015.05.020
|
[23] |
BARAKAT H, EI-GARHY H A S, MOUSTAFA M M A. Detection of pork adulteration in processed meat by species-specific PCR-QIAxcel procedure based on D-loop and cytb genes[J]. Applied Microbiology and Biotechnology,2014,98:9805−9816. doi: 10.1007/s00253-014-6084-x
|
[24] |
SEN F, UNCU A O, UNCU A T, et al. The trnL (UAA)-trnF (GAA) intergenic spacer is a robust marker of green pea (Pisum sativum L.) adulteration in economically valuable pistachio nuts (Pistacia vera L.)[J]. Journal of the Science of Food and Agriculture,2020,100(7):3056−3061. doi: 10.1002/jsfa.10336
|
[25] |
ELSAYED M S A E. A first insight into the application of high discriminatory MIRU-VNTR typing using QIAxcel technology for genotyping Mycobacterium bovis isolated from the Delta area in Egypt[J]. Infection, Genetics and Evolution,2019,71:211−214. doi: 10.1016/j.meegid.2019.04.004
|
[26] |
HAJIBABAEI M, SINGER G A C, HEBERT P D N, et al. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics[J]. Trends in Genetics,2007,23(4):167−172. doi: 10.1016/j.tig.2007.02.001
|
[27] |
IVANOVA N V, DEWAARD J R, HEBERT P D N. An inexpensive automation-friendly protocol for recovering high-quality DNA[J]. Molecular Ecology Notes,2006,6:998−1002. doi: 10.1111/j.1471-8286.2006.01428.x
|
[28] |
RAO M S, CHAKRABORTY G, MURTHY K S. Market drivers and discovering technologies in meat species identification[J]. Food Analytical Methods,2019,12:2416−2429. doi: 10.1007/s12161-019-01591-8
|
[29] |
KUMAR A, RODRIGUES V, BASKARAN K, et al. DNA barcode based species-specific marker for Ocimum tenuiflorum and its applicability in quantification of adulteration in herbal formulations using qPCR[J]. Journal of Herbal Medicine,2020,23:100376. doi: 10.1016/j.hermed.2020.100376
|
[30] |
DAI Z Y, QIAO J, YANG S R, et al. Species authentication of common meat based on PCR analysis of the mitochondrial COI Gene[J]. Applied Biochemistry and Biotechnology,2015,176:1770−1780. doi: 10.1007/s12010-015-1715-y
|
[31] |
LIU W W, TAO J, XUE M, et al. A multiplex PCR method mediated by universal primers for the identification of eight meat ingredients in food products[J]. European Food Research and Technology,2019,245:2385−2392. doi: 10.1007/s00217-019-03350-9
|
[32] |
DUNHAM-CHEATHAM S M, KLINGLER K B, ESTRADA M V, et al. Using a next-generation sequencing approach to DNA metabarcoding for identification of adulteration and potential sources of mercury in commercial cat and dog foods[J]. Science of The Total Environment,2021,778:146102. doi: 10.1016/j.scitotenv.2021.146102
|
[33] |
COTTENET G, SONNARD V, BLANCPAIN C, et al. A DNA macro-array to simultaneously identify 32 meat species in food samples[J]. Food Control,2016,67:135−143. doi: 10.1016/j.foodcont.2016.02.042
|
[34] |
SWETHA V P, SHEEJA T E, SASIKUMAR B. DNA barcoding as an authentication tool for food and agricultural commodities[J]. Current Trends in Biotechnology & Pharmacy,2016,10(4):384−402.
|
[35] |
HELLBERG R S, HERNANDEZ B C, HERNANDEZ E L. Identification of meat and poultry species in food products using DNA barcoding[J]. Food Controll,2017,80:23−28. doi: 10.1016/j.foodcont.2017.04.025
|
[36] |
励炯, 吴琼, 扈明洁, 等. 基于细胞色素C氧化酶亚基Ⅰ序列的DNA微条形码技术鉴别11种生鲜肉制品掺假的研究[J]. 浙江大学学报(农业与生命科学版),2021,47(1):52−59. [LI J, WU Q, HU M J, et al. Identification of adulteration in 11 fresh meat products by DNA mini-barcoding methods based on cytochrome C oxidase subunit Ⅰ (COⅠ) sequence[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(1):52−59. doi: 10.3785/j.issn.1008-9209.2020.04.291
LI J, WU Q, HU M J, et al. Identification of adulteration in 11 fresh meat products by DNA mini-barcoding methods based on cytochrome C oxidase subunit Ⅰ (COⅠ) sequence[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2021, 47(1): 52-59. doi: 10.3785/j.issn.1008-9209.2020.04.291
|
[37] |
郜星晨, 姜伟. 三峡库区常见鱼类DNA条形码本地BLAST数据库的构建和应用[J]. 基因组学与应用生物学,2021,40(5):1952−1964. [HAO X C, JIANG W. The construction and application of BLAST database of DNA barcode for common fish in the three gorges reservoir[J]. Genomics and Applied Biology,2021,40(5):1952−1964. doi: 10.13417/j.gab.040.001952
HAO X C, JIANG W. The construction and application of BLAST database of DNA barcode for common fish in the three gorges reservoir [J]. Genomics and Applied Biology, 2021, 40(5): 1952-1964. doi: 10.13417/j.gab.040.001952
|
1. |
赵孟斌,顾华蓉,穆洪涛,高向阳. 基于感官评价和分子对接的Pro、Glu二肽与鲜味受体构效关系. 现代食品科技. 2023(09): 123-136 .
![]() | |
2. |
赵孟斌,张琦梦,宋明月,刘果,曹庸,高向阳. 味觉感知的人体肠-脑轴信号传导机制研究进展. 食品科学. 2022(11): 197-203 .
![]() |