LIU Guizhen, YANG Zhiwei. Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution[J]. Science and Technology of Food Industry, 2023, 44(13): 224−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090194.
Citation: LIU Guizhen, YANG Zhiwei. Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution[J]. Science and Technology of Food Industry, 2023, 44(13): 224−232. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090194.

Preparation and Physiological Activity of Carboxymethylated Siraitia grosvenorii Polysaccharide with Different Degrees of Substitution

More Information
  • Received Date: September 18, 2022
  • Available Online: May 07, 2023
  • To investigate the effect of carboxymethylated with different degrees of substitution on the properties of Siraitia grosvenorii polysaccharide (SGP), carboxymethylated Siraitia grosvenorii polysaccharide (CSGP) was prepared by solvent method by using the raw material of SGP. The effects of chloroacetic acid concentration, reaction time, and sodium hydroxide concentration on the degree of substitution were analyzed, and the CSGP with the degree of substitution ranging from 0.28 to 1.09 was prepared. The physicochemical properties of CSGP with different substitution degrees were characterized, and the effects of substitution degrees on hypoglycemic activity and antioxidant activity were investigated by in vitro physiological activity experiments. The high-performance gel permeation chromatography revealed that the molecular mass of CSGP was smaller than that of SGP. The results of FTIR manifested a new absorption peak at 1317 cm−1, indicating that carboxymethyl was successfully introduced into the polysaccharide. The results of scanning electron microscopy showed that with the increase of substitution degree, the surface morphology of CSGP became more fragmented and appeared to curl. Congo red experiment revealed that the triple helix structure of CSGP with high substitution degree disappeared. In vitro physiological activity experiment showed that 6 mg/mL of the CSGP-M had the highest α-amylase inhibition, DPPH, and hydroxyl radical scavenging rates of 44.36%±1.30%, 63.17%±2.07%, and 70.21%±1.89%, respectively. Compared with SGP, CSGP-L and CSGP-H, CSGP-M with medium degree of substitution has the best hypoglycemic activity and antioxidant activity in vitro. When the degree of substitution was increased to 1.09, the inhibition rate of α-amylase, DPPH and hydroxyl radical scavenging rate of CSGP-H decreased to 11.65%±0.26%, 47.45%±0.79%, and 34.85%±0.78%, respectively. The results indicated that CSGP with medium degree of substitution could exert the best physiological activity.
  • [1]
    张立娟. 罗汉果多糖的提取、结构分析及抗氧化活性研究[D]. 天津: 天津科技大学, 2019.

    ZHANG L J. Extracting, structure analysis and antioxidant activity of a polysaccharide from Siraitia grosvenorii[D]. Tianjin: Tianjin University of Science & Technology, 2019.
    [2]
    SUZUKI Y A, TOMODA M, MURATA Y, et al. Antidiabetic effect of long-term supplementation with Siraitia grosvenorii on the spontaneously diabetic Goto-Kakizaki rat[J]. British Journal of Nutrition,2007,97(4):770−775. doi: 10.1017/S0007114507381300
    [3]
    QI X Y, CHEN W J, ZHANG L Q, et al. Mogrosides extract from Siraitia grosvenorii scavenges free radicals in vitro and lowers oxidative stress, serum glucose, and lipid levels in alloxan-induced diabetic mice[J]. Nutrition Research,2008,28(4):278−284. doi: 10.1016/j.nutres.2008.02.008
    [4]
    ZHOU G S, ZHANG Y L, LI Y, et al. The metabolism of a natural product mogroside V, in healthy and type 2 diabetic rats[J]. Journal of Chromatography B,2018,1079:25−33. doi: 10.1016/j.jchromb.2018.02.002
    [5]
    WANG S Y, CUI K X, LIU J H, et al. Mogroside-rich extract from Siraitia grosvenorii fruits ameliorates high-fat diet-induced obesity associated with the modulation of gut microbiota in mice[J]. Frontiers in Nutrition,2022,9:870394. doi: 10.3389/fnut.2022.870394
    [6]
    DU Y, LIU J H, LIU S Y, et al. Mogroside-rich extract from Siraitia grosvenorii fruits protects against the depletion of ovarian reserves in aging mice by ameliorating inflammatory stress[J]. Food Function,2022,13(1):121−130. doi: 10.1039/D1FO03194E
    [7]
    SUZUKI-KEMURIYAMA N, ABE A, NAKANE S, et al. Extract of Siraitia grosvenorii (Luo Han Guo) protects against hepatic fibrosis in mice on a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet without trans fatty acids[J]. Fundamental Toxicological Sciences,2021,8(5):135−145. doi: 10.2131/fts.8.135
    [8]
    SHI L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review[J]. International Journal of Biological Macromolecules,2016,92:37−48. doi: 10.1016/j.ijbiomac.2016.06.100
    [9]
    AHMAD M M. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review[J]. Carbohydrate Polymer Technologies and Applications,2021,2:100045. doi: 10.1016/j.carpta.2021.100045
    [10]
    WANG Y F, HOU G H, LI J L, et al. Structure characterization, modification through carboxymethylation and sulfation, and in vitro antioxidant and hypoglycemic activities of a polysaccharide from Lachnum sp[J]. Process Biochemistry,2018,72:177−187. doi: 10.1016/j.procbio.2018.06.002
    [11]
    别蒙, 谢笔钧, 孙智达. 不同取代度水溶性羧甲基茯苓多糖的制备、结构表征及体外抑菌活性[J]. 食品科学,2020,41(12):67−76. [BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science,2020,41(12):67−76. doi: 10.7506/spkx1002-6630-20190603-015

    BIE M, XIE B J, SUN Z D. Preparation, structural characterization and in vitro antibacterial activity of water-soluble carboxymethyl pachymaran with different degrees of substitution[J]. Food Science, 2020, 41(12): 67-76. doi: 10.7506/spkx1002-6630-20190603-015
    [12]
    ZHU Y M, PAN L C, ZHANG L J, et al. Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii[J]. International Journal of Biological Macromolecules,2020,165(Pt B):1900−1910.
    [13]
    白家峰, 姚延超, 郑毅, 等. 罗汉果多糖的羧甲基化修饰及抗氧化性能影响研究[J]. 湖北农业科学,2021,60(15):107−111. [BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences,2021,60(15):107−111. doi: 10.14088/j.cnki.issn0439-8114.2021.15.021

    BAI J F, YAO Y C, ZHENG Y, et al. Study on the effect of carboxymethylation of Siraitia grosvenorii polysaccharide on its antioxidant[J]. Hubei Agricultural Sciences, 2021, 60(15): 107-111. doi: 10.14088/j.cnki.issn0439-8114.2021.15.021
    [14]
    崔丹丹. 罗汉果多糖提取分离、结构解析及对糖尿病肾病小鼠保护作用研究[D]. 西安: 陕西科技大学, 2021

    CUI D D. Study on extraction, isolation, structure analysis and protective effect of Siraitia grosvenorii polysaccharide on diabetic nephropathy in mice[D]. Xi’an: Shanxi University of Science and Technology, 2021.
    [15]
    XIE L M, HUANG Z B, QIN L, et al. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress[J]. International Journal of Biological Macromolecules,2022,204:103−115. doi: 10.1016/j.ijbiomac.2022.01.192
    [16]
    王玉蓉, 冯斌, 巨佳, 等. 羧甲基化白及多糖-壳聚糖载姜黄素聚电解质复合膜的制备及其表征[J]. 中草药,2020,51(4):978−985. [WANG Y R, FENG B, JU J, et al. Carboxymethyl Bletilla striata polysaccharide-chitosan@curcumin polyelectrolyte complex films: Preparation and characterization[J]. Chinese Traditional and Herbal Drugs,2020,51(4):978−985. doi: 10.7501/j.issn.0253-2670.2020.04.023

    WANG Y R, FENG B, JU J, et al. Carboxymethyl Bletilla striata polysaccharide-chitosan@curcumin polyelectrolyte complex films: Preparation and characterization[J]. Chinese Traditional and Herbal Drugs, 2020, 51(4): 978-985. doi: 10.7501/j.issn.0253-2670.2020.04.023
    [17]
    MASUKO T, MINAMI A, IWASAKI N, et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format[J]. Analytical Biochemistry,2005,339(1):69−72. doi: 10.1016/j.ab.2004.12.001
    [18]
    王文平, 郭祀远, 李琳, 等. 野木瓜多糖中糖醛酸含量测定[J]. 食品科技,2007(10):84−86. [WANG W P, GUO Q Y, LI L, et al. Determination of uronic acids in polysaccharides from Stanuntonia Chinensis[J]. Food Science and Technology,2007(10):84−86. doi: 10.3969/j.issn.1005-9989.2007.10.024

    WANG W P, GUO Q Y, LI L, et al. Determination of uronic acids in polysaccharides from Stanuntonia Chinensis[J]. Food Science and Technology, 2007(10): 84-86. doi: 10.3969/j.issn.1005-9989.2007.10.024
    [19]
    JIA Y N, XUE Z H, WANG Y J, et al. Chemical structure and inhibition on alpha-glucosidase of polysaccharides from corn silk by fractional precipitation[J]. Carbohydrate Polymers 2021, 252: 117185.
    [20]
    栾迪. 莼菜体外胶多糖降血糖组分分离及其降血糖机理研究[D]. 杭州: 浙江工业大学, 2020.

    LUAN D. Isolation and hypoglycemic mechanism effect of polysacchaide from Brasenia schreberi[D]. Hangzhou: Zhejiang University of Technology, 2020
    [21]
    KAGIMURA F Y, DA CUNHA M A, THEIS T V, et al. Carboxymethylation of (1->6)-beta-glucan (lasiodiplodan): Preparation, characterization and antioxidant evaluation[J]. Carbohydrate Polymers,2015,127:390−399. doi: 10.1016/j.carbpol.2015.03.045
    [22]
    HUANG Z, ZONG M H, LOU W Y. Effect of acetylation modification on the emulsifying and antioxidant properties of polysaccharide from Millettia speciosa Champ[J]. Food Hydrocolloids,2022,124:107217. doi: 10.1016/j.foodhyd.2021.107217
    [23]
    WANG X M, ZHANG Z S, ZHAO M X. Carboxymethylation of polysaccharides from Tremella fuciformis for antioxidant and moisture-preserving activities[J]. International Journal of Biological Macromolecules,2015,72:526−530. doi: 10.1016/j.ijbiomac.2014.08.045
    [24]
    李雪晖, 罗心雨, 王莹. 羧甲基化南瓜多糖的制备及抗氧化、降血糖活性研究[J]. 食品与机械,2022,38(3):178−183, 246. [LI X H, LUO X Y, WANG Y. Preparation of carboxymethylated pumpkin polysaccharide and its antioxidant and hypolycemic activities[J]. Food & Machinery,2022,38(3):178−183, 246. doi: 10.13652/j.spjx.1003.5788.2022.90007

    LI X H, LUO X Y, WANG Y. Preparation of carboxymethylated pumpkin polysaccharide and its antioxidant and hypolycemic activities[J]. FOOD&MACHINERY, 2022, 38(3): 178-83, 246. doi: 10.13652/j.spjx.1003.5788.2022.90007
    [25]
    ZOU G J, HUANG W B, SUN X Y, et al. Carboxymethylation of corn silk polysaccharide and its inhibition on adhesion of nanocalcium oxalate crystals to damaged renal epithelial cells[J]. ACS Biomaterials Science& Engineering,2021,7(7):3409−3422.
    [26]
    CAO Y Y, JI Y H, LIAO A M, et al. Effects of sulfated, phosphorylated and carboxymethylated modifications on the antioxidant activitiesin vitro of polysaccharides sequentially extracted from Amana edulis[J]. International Journal of Biological Macromolecules,2020,146:887−896. doi: 10.1016/j.ijbiomac.2019.09.211
    [27]
    WANG Y J, MO Q, LI Z N, et al. Effects of degree of carboxymethylation on physicochemical and biological properties of pachyman[J]. International Journal of Biological Macromolecules,2012,51(5):1052−1056. doi: 10.1016/j.ijbiomac.2012.08.022
    [28]
    LIU Y T, YOU Y X, LI Y W, et al. Characterization of carboxymethylated polysaccharides from Catathelasma ventricosum and their antioxidant and antibacterial activities[J]. Journal of Functional Foods,2017,38:355−362. doi: 10.1016/j.jff.2017.09.050
    [29]
    CHAKKA V P, ZHOU T. Carboxymethylation of polysaccharides: Synthesis and bioactivities[J]. International Journal of Biological Macromolecules, 2020, 165(Pt B): 2425−2431.
    [30]
    YUEN S N, CHOI S M, PHILLIPS D L, et al. Raman and FTIR spectroscopic study of carboxymethylated non-starch polysaccharides[J]. Food Chemistry,2009,114(3):1091−1098. doi: 10.1016/j.foodchem.2008.10.053
    [31]
    TU W S, ZHU J H, BI S X, et al. Isolation, characterization and bioactivities of a new polysaccharide from Annona squamosa and its sulfated derivative[J]. Carbohydrate Polymers,2016,152:287−296. doi: 10.1016/j.carbpol.2016.07.012
    [32]
    焦中高. 红枣多糖的分子修饰与生物活性研究[D]. 杨凌: 西北农林科技大学, 2012

    JIAO Z G. Molwcular modification and biological activities of Ziziphus jujuba fruit polysaccharide[D]. Yangling: Northwest A & F University, 2012.
    [33]
    艾于杰. 抗氧化活性茶多糖构效关系研究[D]. 武汉: 华中农业大学, 2019

    AI Y J. Study on the structure-activity relationship of antioxidant tea polysaccharides[D]. Wuhan: Huazhong Agricultural University, 2019.
    [34]
    FENG S M, LUAN D, NING K, et al. Ultrafiltration isolation, hypoglycemic activity analysis and structural characterization of polysaccharides from Brasenia schreberi[J]. International Journal of Biological Macromolecules,2019,135:141−151. doi: 10.1016/j.ijbiomac.2019.05.129
    [35]
    贾红倩, 刘嵬, 颜军, 等. 杏鲍菇多糖的分离纯化、乙酰化修饰及其抗氧化活性[J]. 食品工业科技,2018,39(3):39−44. [JIA H Q, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry,2018,39(3):39−44. doi: 10.13386/j.issn1002-0306.2018.03.008

    JIA H J, LIU W, YAN J, et al. Isolation and purification, acetylation modification and antioxidant activity of polysaccharides of Pleurotus eryngii Quel[J]. Science and Technology of Food Industry, 2018, 39(3): 39-44. doi: 10.13386/j.issn1002-0306.2018.03.008
    [36]
    杨玉洁, 刘静宜, 谭艳, 等. 多糖降血糖活性构效关系及作用机制研究进展[J]. 食品科学,2021,42(23):355−363. [YANG Y J, LIU J Y, TAN Y, et al. Research progress on the structure-activity relationship and hypoglycemic mechanism of polysaccharide[J]. Food Science,2021,42(23):355−363. doi: 10.7506/spkx1002-6630-20200818-244

    YANG Y J, LIU J Y, TAN J, et al. Research progress on the structure-activity relationship and hypoglycemic mechanism of polysaccharide[J]. Food Science, 2021, 42(23): 355-363. doi: 10.7506/spkx1002-6630-20200818-244
    [37]
    曹莉莉, 李亮, 王芳, 等. 羧甲基化修饰余甘多糖及生物活性研究[J]. 中国食品学报,2017,17(10):57−63. [CAO L L, LI L, WANG F, et al. Antioxidant and antineoplastic activities of carboxymethyled polysaccharide from fruits of Phyllanthus emblic L

    J]. Journal of Chinese Institute of Food Science and Technology,2017,17(10):57−63.
    [38]
    AN Y Z, LIU H T, LI X X, et al. Carboxymethylation modification, characterization, antioxidant activity and anti-UVC ability of Sargassum fusiforme polysaccharide[J]. Carbohydrate Research,2022,515:108555. doi: 10.1016/j.carres.2022.108555
    [39]
    周瑞, 田呈瑞, 张静, 等. 鸡腿菇多糖羧甲基修饰及其抗氧化性研究[J]. 食品科学,2010,31(13):10−15. [ZHOU R, TIAN C R, ZHANG J, et al. Carboxymethylation and antioxidant activity of Coprinus comatus polysaccharide[J]. Food Science,2010,31(13):10−15.

    ZHOU R, TIAN C R, ZHANG J, et al. Carboxymethylation and antioxidant activity of Coprinus comatus polysaccharide[J]. Food Science, 2010, 31(13): 10-15.
  • Cited by

    Periodical cited type(4)

    1. 张瑜. 气质膨化即食牛蹄筋加工工艺研究. 保鲜与加工. 2024(03): 40-46 .
    2. 卢相龙,胡秦晓,秦斐. 杏皮水酸奶冻饮品制作工艺优化及品质研究. 饮料工业. 2024(05): 45-50 .
    3. 薛山,黄艺萍. 四维辅助三维响应面法优化菠萝蜜种泥果冻配方. 食品工业. 2022(01): 156-161 .
    4. 李想,宋弘扬,赵存朝,盛军,陶亮,田洋. 一种特色百香果果冻产品的研制. 食品工业科技. 2021(06): 159-165 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (125) PDF downloads (12) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return