YANG Ke, LI Xia, LI Haipeng, et al. Structural Characterization and Prebiotic Effects of Passiflora edulis Sims Peel Polysaccharide-Zinc[J]. Science and Technology of Food Industry, 2023, 44(17): 27−34. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090177.
Citation: YANG Ke, LI Xia, LI Haipeng, et al. Structural Characterization and Prebiotic Effects of Passiflora edulis Sims Peel Polysaccharide-Zinc[J]. Science and Technology of Food Industry, 2023, 44(17): 27−34. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090177.

Structural Characterization and Prebiotic Effects of Passiflora edulis Sims Peel Polysaccharide-Zinc

More Information
  • Received Date: September 18, 2022
  • Available Online: July 03, 2023
  • This study aimed to characterize the structure of Passiflora edulis Sims peel polysaccharide-zinc (WPEP-Zn) and its prebiotic effects. The structural characteristics of WPEP-Zn were determined using Fourier transform infrared spectrometer, X-ray diffractometer, scanning electron microscope, Congo red test, and thermogravimetric analyzer. The WPEP-Zn was used as carbon source to study its prebiotic effects on Lactobacillus plantarum, Lactobacillus delbrueckii (subsp.) bulgaricus, Lactobacillus brevis, and Streptococcus thermophilus. The results showed that WPEP-Zn had sugar and uronic acid content of 23.26% and 50.46%, respectively, whereas the zinc content was 10.64 mg/g. It had a triple helix structure compared with the Passiflora edulis Sims peel polysaccharide (WPEP). Its relative crystallinity decreased, the infrared absorption peak changed, the morphological structure altered, and the thermal stability enhanced. The optimal concentrations of WPEP-Zn used to promote the growth of the four bacteria strains were 3%, 2%, 2%, and 2%, respectively. The prebiotic effects of WPEP-Zn on L. plantarum, L. delbrueckii (subsp.) bulgaricus, and L. brevis were lower than WPEP, but its prebiotic effect on S. thermophilus was higher than the WPEP. The findings revealed the prebiotic effect of WPEP-Zn. The study on WPEP-Zn provided a basis for developing new polysaccharide-zinc supplements and the effective utilization of passion fruit resources.
  • [1]
    HERNÁNDEZ S B, VIVAR V M Á, RODRÍGUEZ M, et al. Dietary fibre and antioxidant compounds in passion fruit (Passiflora edulis f. flavicarpa) peel and depectinised peel waste[J]. International Journal of Food Science & Technology,2015,50(1):268−274.
    [2]
    王琴飞, 李莉萍, 高玲, 等. 反相高效液相色谱法测定西番莲中的有机酸[J]. 热带作物学报,2015,36(8):1511−1517. [WANG Q F, LI L P, GAO L, et al. Analysis of organic acids in passion fruit by reverse phase high performance liquid chromatography[J]. Chinese Journal of Tropical Crops,2015,36(8):1511−1517.

    WANG Q F, LI L G, GAO L, et al. Analysis of organic acids in passion fruit by reverse phase high performance liquid chromatography[J]. Chinese Journal of Tropical Crops, 2015, 36(8): 1511-1517.
    [3]
    邓博一, 申铉日, 邓用川. 海南百香果、莲雾、青枣营养成分的比较分析[J]. 食品工业科技,2013,34(12):335−338, 343. [DENG B Y, SHEN X R, DENG Y C. Analysis of nutritional ingredients of Hainan Passiflora edulis Sims, Syzygium samarangense and Ziziphus muaritiana[J]. Science and Technology of Food Industry,2013,34(12):335−338, 343.

    DENG B Y, SHEN X R, DENG Y C. Analysis of nutritional ingredients of Hainan Passiflora edulis Sims, Syzygium samarangense and Ziziphus muaritiana[J]. Science and Technology of Food Industry, 2013, 34(12): 335-338, 343.
    [4]
    文良娟, 毛慧君, 张元春, 等. 西番莲果皮成分分析及其抗氧化活性的研究[J]. 食品科学,2008,29(11):54−58. [WEN L J, MAO H J, ZHANG Y C, et al. Study on compositions and antioxidant activity of Passiflora edulis rind[J]. Food Science,2008,29(11):54−58.

    WEN L J, MAO H J, ZHANG Y C, et al. Study on compositions and antioxidant activity of Passiflora edulis rind[J]. Food Science, 2008, 29(11): 54-58.
    [5]
    张玲, 吴晓颖, 黄启慧, 等. 紫果西番莲皮中多酚组成及其抗氧化活性研究[J]. 食品研究与开发,2020,41(17):37−44. [ZHANG L, WU X Y, HUANG Q H, et al. Polyphenols in passionflower peel by LC-MS and its antioxidant activity[J]. Food Research and Development,2020,41(17):37−44.

    ZHANG L, WU X Y, HUANG Q H, et al. Polyphenols in passionflower peel by LC-MS and its antioxidant activity[J]. Food Research and Development, 2020, 41(17): 37-44.
    [6]
    PEREIRA D T V, BARRALES F M, PEREIIRA E, et al. Phenolic compounds from passion fruit rinds using ultrasound-assisted pressurized liquid extraction and nanofiltration[J]. Journal of Food Engineering,2022,325:110977. doi: 10.1016/j.jfoodeng.2022.110977
    [7]
    李霞, 熊峰, 覃献杏, 等. 西番莲果皮多糖微波辅助提取工艺优化及其体外抗氧化性[J]. 食品工业科技,2018,39(15):141−146. [LI X, XIONG F, QIN X X, et al. Optimization of microwave-assisted extraction process of polysaccharide from Passiflora edulis sims peel and evaluation of antioxidant activity in vitro[J]. Science and Technology of Food Industry,2018,39(15):141−146.

    LI X, XIONG F, QIN X X, et al. Optimization of microwave-assisted extraction process of polysaccharide from Passiflora edulis sims peel and evaluation of antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2018, 39(15): 141-146.
    [8]
    胡楠. 西番莲果皮多糖的降解、结构及体外抗氧化活性研究[D]. 桂林: 桂林理工大学, 2020.

    HU N. Study on degradation, structure and antioxidant activity of Passiflora edulis sims peel polysaccharide[D]. Guilin: Guilin University of Technology, 2020.
    [9]
    李霞, 陈海鸥, 尚一帆, 等. 西番莲果皮多糖改善肠道功能及降血糖活性[J]. 桂林理工大学学报,2021,41(4):864−868. [LI X, CHEN H O, SHANG Y F, et al. Improvement of intestine function and hypoglycemic activity in polysaccharide from Passiflora edulis sims peel[J]. Journal of Guilin University of Technology,2021,41(4):864−868.

    LI X, CHEN H O, SHANG Y F, et al. Improvement of intestine function and hypoglycemic activity in polysaccharide from Passiflora edulis sims peel[J] Journal of Guilin University of Technology, 2021, 41(4): 864-868.
    [10]
    TENG H, HE Z, LI X, et al. Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel[J]. Journal of Molecular Structure, 2022: 133309.
    [11]
    SUN Y, GUAN Y, KHOO H E, et al. In vitro assessment of chemical and pre-biotic properties of carboxymethylated polysaccharides from Passiflora edulis peel, xylan, and citrus pectin[J]. Frontiers in Nutrition, 2021: 1021.
    [12]
    WANG L, LI X. Preparation, physicochemical property and in vitro antioxidant activity of zinc-Hohenbuehelia serotina polysaccharides complex[J]. International Journal of Biological Macromolecules,2019,121:862−869. doi: 10.1016/j.ijbiomac.2018.10.118
    [13]
    ANDREINI C, BERTINI I. A bioinformatics view of zinc enzymes[J]. Journal of Inorganic Biochemistry,2012,111:150−156. doi: 10.1016/j.jinorgbio.2011.11.020
    [14]
    BOREIKO C J. Overview of health risk assess A bioinformatics view of zinc enzymesments for zinc[J]. Journal of Toxicology and Environmental Health, Part A,2010,73(2-3):166−174. doi: 10.1080/15287390903340427
    [15]
    CAETANO S M E, NETTO F M, BERTOLDO P M T, et al. Peptide-metal complexes: Obtention and role in increasing bioavailability and decreasing the pro-oxidant effect of minerals[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1470−1489. doi: 10.1080/10408398.2020.1761770
    [16]
    JACKSON M J, LOWE N M. Physiological role of zinc[J]. Food Chemistry,1992,43(3):233−238. doi: 10.1016/0308-8146(92)90179-6
    [17]
    DONG J, LI H, MIN W. Preparation, characterization and bioactivities of Athelia rolfsii exopolysaccharide-zinc complex (AEPS-zinc)[J]. International Journal of Biological Macromolecules,2018,113:20−28. doi: 10.1016/j.ijbiomac.2018.01.223
    [18]
    ABDOLLAHI A, GHAHRAMANI A, GHAHRAMANI N. Zinc and kidney disease: A review[J]. Iranian Journal of Kidney Diseases,2022,16(2):79.
    [19]
    先宏, 张莉, 宋曙辉, 等. 海藻多糖锌配合物的组成及其对THP-1细胞耗氧的影响[J]. 营养学报,2018,40(3):261−265, 271. [XIAN H, ZHANG L, SONG S H, et al. Composition of seaweed polysaccharide zinc complex and its effect on oxygen consumption of THP-1 cells[J]. Acta Nutrimenta Sinica,2018,40(3):261−265, 271.

    XIAN H, ZHANG L, SONG S H, et al. Composition of seaweed polysaccharide zinc complex and its effect on oxygen consumption of THP-1 cells [J]. Acta Nutrimenta Sinica, 2018, 40(3): 261-265, 271.
    [20]
    CHEN H, ZHANG M, QU Z, et al. Compositional analysis and preliminary toxicological evaluation of a tea polysaccharide conjugate[J]. Journal of Agricultural and Food Chemistry,2007,55(6):2256−2260. doi: 10.1021/jf0632740
    [21]
    HOLEN J P, JOHNSTON L J, URRIOLA P E, et al. Comparative digestibility of polysaccharide-complexed zinc and zinc sulfate in diets for gestating and lactating sows[J]. Journal of Animal Science,2020,98(4):skaa079. doi: 10.1093/jas/skaa079
    [22]
    ZHANG Y, KHAN M Z H, YUAN T, et al. Preparation and characterization of D. opposita Thunb polysaccharide-zinc inclusion complex and evaluation of anti-diabetic activities[J]. International Journal of Biological Macromolecules,2019,121:1029−1036. doi: 10.1016/j.ijbiomac.2018.10.068
    [23]
    XU N, REN Z, ZHANG J, et al. Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis[J]. International Journal of Biological Macromolecules,2017,95:204−214. doi: 10.1016/j.ijbiomac.2016.11.060
    [24]
    DONG S, ZHANG B, MA Y, et al. Pumpkin skin polysaccharide–Zn (II) complex: Preparation, characterization, and suppression of inflammation in zebrafish[J]. Foods,2022,11(17):2610. doi: 10.3390/foods11172610
    [25]
    GUAN Y, SUN H, CHEN H, et al. Physicochemical characterization and the hypoglycemia effects of polysaccharide isolated from Passiflora edulis Sims peel[J]. Food & Function,2021,12(9):4221−4230.
    [26]
    董淑君, 张禧庆, 刘旭龙, 等. 南瓜皮多糖锌的制备及生物利用率研究[J]. 食品工业科技,2022,43(18):200−207. [DONG S J, ZHANG X Q, LIU X L, et al. Preparation and bioavailability of pumpkin skin polysaccharide-zinc complex[J]. Science and Technology of Food Industry,2022,43(18):200−207.

    DONG S J, ZHANG X Q, LIU X L, et al. Preparation and bioavailability of pumpkin skin polysaccharide-zinc complex[J]. Science and Technology of Food Industry, 2022, 43(18): 200-207.
    [27]
    朱良, 王一飞, 朱艳梅. 裙带菜孢子叶多糖含量的测定[J]. 食品科学,2005,26(10):184−186. [ZHU L, WANG Y F, ZHU Y M. Determination of polysaccharide in sporophyll of Undaria pinnatifida Suringar[J]. Food Science,2005,26(10):184−186.

    ZHU L, WANG Y F, ZHU Y M. Determination of polysaccharide in sporophyll of Undaria pinnatifida Suringar[J]. Food Science, 2005, 26(10): 184-186.
    [28]
    俞丹, 马龙, 赵军, 等. 琐琐葡萄多糖中糖醛酸含量的测定[J]. 新疆医科大学学报,2009,32(5):533−535. [YU D, MA L, ZHAO J, et al. Quantitative determination of uronic acid in polysaccharides from Vitis vinifer L

    J]. Journal of Xinjiang Medical University,2009,32(5):533−535.
    [29]
    NIE C, ZHU P, MA S, et al. Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce[J]. Carbohydrate Polymers,2018,188:236−242. doi: 10.1016/j.carbpol.2018.02.009
    [30]
    夏朝红, 戴奇, 房韦, 等. 几种多糖的红外光谱研究[J]. 武汉理工大学学报,2007(1):45−47. [XIA C H, DAI Q, FANG W, et al. Research on the IR spectrscopy of kinds of polysaccharide[J]. Journal of Wuhan University of Technology,2007(1):45−47.

    XIA C H, DAI Q, FANG W, et al. Research on the IR spectrscopy of kinds of polysaccharide[J]. Journal of Wuhan University of Technology, 2007(1): 45-47.
    [31]
    ZHOU H, WANG Z, KE Q, et al. Preparation and characterisation of Qingzhuan dark tea polysaccharide-zinc[J]. Food Science and Technology, 2022, 42.
    [32]
    张国柱. 木聚糖及其衍生物的益生作用研究[D]. 桂林: 桂林理工大学, 2021.

    ZHANG G Z. Study on the prebiotic effect of xylan and its derivatives[D]. Guilin: Guilin University of Technology, 2020.
    [33]
    GUO X, KANG J, XU Z, et al. Triple-helix polysaccharides: Formation mechanisms and analytical methods[J]. Carbohydrate Polymers,2021,262:117962. doi: 10.1016/j.carbpol.2021.117962
    [34]
    常相娜, 陈雪峰, 龚频, 等. 融水香菇多糖结构表征及体外抗氧化、降糖活性[J]. 中国食品添加剂,2022,33(4):1−9. [CHANG X N, CHEN X F, GONG P, et al. Structural characterization, in vitro anti-oxidative effect and hypoglycemic activity of lentinan from Rongshui County[J]. China Food Additives,2022,33(4):1−9.

    CHANG X N, CHEN X F, GONG P, et al. Structural characterization, in vitro anti-oxidative effect and hypoglycemic activity of lentinan from Rongshui County [J]. China Food Additives, 2022, 33(4): 1-9.
    [35]
    李文文. 生姜皮多糖锌的制备与抗炎活性评价[D]. 泰安: 山东农业大学, 2022.

    LI W W. Preparation and anti-inflammatory activity evaluation of ginger peel polysaccharide zinc complex[D]. Taian: Shandong Agricultural University, 2022.
    [36]
    董金满. 罗耳阿太菌多糖锌的制备、表征及其生物活性研究[D]. 长春: 吉林农业大学, 2018.

    DONG J M. Preparation, characterization and bioactivities of Athelia rolfsii polysaccharide-zinc complex (AEPS-Zn)[D]. Changchun: Jilin Agricultural University, 2018.
    [37]
    羡荣华, 蒲铎文, 樊梓鸾, 等. 老山芹多糖的分离纯化、结构表征及体外降糖活性研究[J/OL]. 食品与发酵工业: 1−9. [2022-10-20]. DOI: 10.13995/j. cnki.11-1802/ts. 032678.

    XIAN R H, PU D W, FAN Z L, et Al. Isolation, purification, structure characterisation and hypoglycemic activity analysis of polysaccharides from Heraclenm dissectum[J]. Food and Fermentation Industries, 1−9 [2022-10-18] DOI: 10. 13995/j. cnki. 11-1802/ts. 032678.
    [38]
    曾凡珂, 潘蕾蔓, 张祎, 等. 荸荠皮多糖的理化性质及抗氧化活性[J]. 现代食品科技,2022,38(3):82−88, 81. [ZENG F K, PAN L M, ZHANG Y, et al. Physicochemical properties and antioxidant activities of the polysaccharides from Chinese water chestnut peels[J]. Modern Food Science and Technology,2022,38(3):82−88, 81. doi: 10.13982/j.mfst.1673-9078.2022.3.0581

    ZENG F K, PAN L M, ZHANG Y, et al. Physicochemical properties and antioxidant activities of the polysaccharides from Chinese water chestnut peels[J] Modern Food Science and Technology, 2022, 38(3): 82-88, 81. DOI: 10.13982/j.mfst.1673-9078.2022.3.0581">10. 13982/j. mfst. 1673-9078. 2022. 3. 0581.
    [39]
    LÓPEZ L X, ARBOLEDA E C, PARRA S R, et al. Biotechnological production, characterization and in vitro antitumor activity of polysaccharides from a native strain of Lentinus crinitus[J]. International Journal of Biological Macromolecules,2020,164:3133−3144. doi: 10.1016/j.ijbiomac.2020.08.191
    [40]
    汤陈鹏, 吕峰, 王蓉琳. 孔石莼多糖锌结构表征与体外降血糖活性[J]. 食品科学,2020,41(7):52−58. [TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science,2020,41(7):52−58.

    TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex [J]. Food Science, 2020, 41(7): 52-58.
    [41]
    BAI X, QIU Z, ZHENG Z, et al. Preparation and characterization of garlic polysaccharide-Zn (II) complexes and their bioactivities as a zinc supplement in Zn-deficient mice[J]. Food Chemistry: X,2022,15:100361. doi: 10.1016/j.fochx.2022.100361
    [42]
    BEYERSMANN D. Homeostasis and cellular functions of zinc[J]. Materialwissenschaft und Werkstofftechnik,2002,33(12):764−769. doi: 10.1002/mawe.200290008
  • Cited by

    Periodical cited type(2)

    1. 王晶,陈莹莹,焦辉进,周浓,史虎军,张弦飞. 基于响应面法的枇杷叶总黄酮提取工艺优化及其抗氧化活性研究. 南方农业. 2024(11): 1-8 .
    2. 王晶,陈莹莹,焦辉进,周浓,史虎军,张弦飞. 不同采收期枇杷叶总酚、总黄酮含量及抗氧化活性研究. 中国野生植物资源. 2024(12): 52-57 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (139) PDF downloads (36) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return