Citation: | LI Yuzhen. Effects of Reaction Conditions on the Formation of Furfural Compounds in Maillard Reaction System of Glucose-Glycine[J]. Science and Technology of Food Industry, 2023, 44(15): 85−92. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090148. |
[1] |
FARAG M R, ALAGAWANY M, BIN-JUMAH M, et al. The toxicological aspects of the heat-borne toxicant 5-hydroxymethylfurfural in animals: A review[J]. Molecules,2020,25(8):1941(1−13).
|
[2] |
BAUER-MARINOVIC M, TAUGNER F, FLORIAN S, et al. Toxicity studies with 5-hydroxymethylfurfural and its metabolite 5-sulphooxymethylfurfural in wild-type mice and transgenic mice expressing human sulphotransferases 1A1 and 1A2[J]. Archives of Toxicology,2012,86(5):701−711. doi: 10.1007/s00204-012-0807-5
|
[3] |
ABRAHAM K, GURTLER R, BERG K, et al. Toxicology and risk assessment of 5-hydroxymethylfurfural in food[J]. Molecular Nutrition & Food Research,2011,55(5):667−678.
|
[4] |
MONIEN B H, ENGST W, BARKNOWITZ G, et al. Mutagenicity of 5-hydroxymethylfurfural in V79 cells expressing human SULT1A1: Identification and mass spectrometric quantification of DNA adducts formed[J]. Chemical Research in Toxicology,2012,25(7):1484−1492. doi: 10.1021/tx300150n
|
[5] |
王金山, 牛凤云, 孙萍, 等. 糠醛毒性的研究[J]. 卫生毒理学杂志,1994,8(3):21−23. [WANG J, NIU F, SUN P, et al. Studies on the toxicity of furfural[J]. Journal of Toxicology,1994,8(3):21−23.
WANG J, NIU F, SUN P, et al. Studies on the toxicity of furfural[J]. Journal of Toxicology, 1994, 8(3): 21−23.
|
[6] |
UDDIN S, HADI S M. Reactions of furfural and methylfurfural with DNA[J]. Biochemistry and Molecular Biology International,1995,35(1):185−195.
|
[7] |
PINEIRO-GARCIA A, GONZALEZ-ALATORRE G, VEGA-DIAZ S M, et al. Reduced graphene oxide coating with high performance for the solid phase micro-extraction of furfural in espresso coffee[J]. Journal of Food Measurement and Characterization,2020,14(1):314−321. doi: 10.1007/s11694-019-00293-3
|
[8] |
GONG M, ZHOU Z, YU Y, et al. Investigation of the 5-hydroxymethylfurfural and furfural content of Chinese traditional fermented vinegars from different regions and its correlation with the saccharide and amino acid content[J]. LWT,2020,124:109175. doi: 10.1016/j.lwt.2020.109175
|
[9] |
YILTIRAK S, KOCADAĞLI T, ÇELIK E E, et al. Effects of sprouting and fermentation on free asparagine and reducing sugars in wheat, einkorn, oat, rye, barley, and buckwheat and on acrylamide and 5-hydroxymethylfurfural formation during heating[J]. Journal of Agricultural and Food Chemistry,2021,69(32):9419−9433. doi: 10.1021/acs.jafc.1c03316
|
[10] |
GÜRSUL A I, VURAL G. Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in fruit products during storage: New insights into the role of Maillard reaction[J]. Food Chemistry,2021:363.
|
[11] |
孙莹, 苗榕芯. 浅谈饮料中5-羟甲基糠醛的研究进展[J]. 食品研究与开发,2018,39(13):206−209. [SUN Y, MIAO R X. Discussion on the progress of 5-hydroxymethyl furfural in beverages[J]. Food Research and Development,2018,39(13):206−209. doi: 10.3969/j.issn.1005-6521.2018.13.036
SUN Y, MIAO R X. Discussion on the progress of 5-hydroxymethyl furfural in beverages[J]. Food Research and development, 2018, 39(13): 206−209. doi: 10.3969/j.issn.1005-6521.2018.13.036
|
[12] |
刘兴勇, 陈兴连, 林涛, 等. 烘焙程度对小粒咖啡5-羟甲基糠醛生成的影响[J]. 中国食品学报,2022,22(1):324−331. [LIU X Y, CHEN X L, LIN T, et al. Effects of roasting degree on formation of 5-hydroxymethylfurfural contents in coffea Arabica[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(1):324−331. doi: 10.16429/j.1009-7848.2022.01.035
LIU X Y, CHEN X L, LIN T, et al. Effects of roasting degree on formation of 5-hydroxymethylfurfural contents in coffea Arabica[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 324−331. doi: 10.16429/j.1009-7848.2022.01.035
|
[13] |
PELETEIRO S, LOPES A M D C, GARROTE G, et al. Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent[J]. Industrial Crops and Products,2015,77:163−166. doi: 10.1016/j.indcrop.2015.08.048
|
[14] |
PESAVENTO M, MERLI D, BIESUZ R, et al. A MIP-based low-cost electrochemical sensor for 2-furaldehyde detection in beverages[J]. Analytica Chimica Acta,2021,1142(15):201−210.
|
[15] |
BOEKEL M A J S V. Effect of heating on Maillard reactions in milk[J]. Food Chemistry,1998,62(4):403−414. doi: 10.1016/S0308-8146(98)00075-2
|
[16] |
KWAK E J, LIM S I. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control[J]. Amino Acids,2004,27(1):85−90.
|
[17] |
孙方达, 孔保华, 韩齐, 等. 反应初始pH和加热时间对猪骨蛋白水解物美拉德产物特性的影响[J]. 食品工业科技,2013,34(22):106−110. [SUN F D, KONG B H, HAN Q, et al. Influence of different initial pH and heating time on characteristic of the porcine bone protein hydrolysate Maillard products[J]. Science and Technology of Food Industry,2013,34(22):106−110. doi: 10.13386/j.issn1002-0306.2013.22.057
SUN F D, KONG B H, HAN Q, et al. Influence of different initial pH and heating time on characteristic of the porcine bone protein hydrolysate Maillard products[J]. Science and Technology of Food Industry, 2013, 34(22): 106−110. doi: 10.13386/j.issn1002-0306.2013.22.057
|
[18] |
ZHANG L, KONG Y, YANG X, et al. Kinetics of 5-hydroxymethylfurfural formation in the sugar-amino acid model of Maillard reaction[J]. Journal of the Science of Food and Agriculture,2018,99(5):2340−2347.
|
[19] |
ZHOU Y, LI Y, YU A. The effects of reactants ratios, reaction temperatures and times on Maillard reaction products of the L-ascorbic acid/L-glutamic acid system[J]. Food Science and Technology,2016,36(2):268−274. doi: 10.1590/1678-457X.02415
|
[20] |
张凤梅, 汤高奇, 田玮, 等. 模式体系谷氨酸-葡萄糖美拉德反应程度研究[J]. 中国食品学报,2019,19(3):49−59. [ZHANG F M, TANG G Q, TIAN W, et al. Research on the process of glutamic acid and glucose Maillard reaction system[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(3):49−59. doi: 10.16429/j.1009-7848.2019.03.006
ZHANG F M, TANG G Q, TIAN W, et al. Research on the process of glutamic acid and glucose Maillard reaction system[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(3): 49−59. doi: 10.16429/j.1009-7848.2019.03.006
|
[21] |
LI Y, JIA X, WANG Z, et al. Changes in harmful Maillard reaction products in low-temperature long-time pasteurization-treated milks reconstituted from whole-milk powders after different storage times[J]. Journal of Food Composition and Analysis,2022,106:104280. doi: 10.1016/j.jfca.2021.104280
|
[22] |
卢键媚, 林晓蓉, 陈忠正, 等. 反应条件对糖-酸反应体系中3-脱氧葡萄糖醛酮及5-羟甲基糠醛形成的影响[J]. 食品工业科技,2022,43(2):93−100. [LU J M, LIN X R, CHEN Z Z, et al. Effect of reaction conditions on the formation of 3-deoxyglucosone and 5-hydroxymethylfurfural in sugar-acid reaction system[J]. Science and Technology of Food Industry,2022,43(2):93−100. doi: 10.13386/j.issn1002-0306.2021040327
LU J M, LIN X R, CHEN Z Z, et al. Effect of reaction conditions on the formation of 3-deoxyglucosone and 5-hydroxymethylfurfural in sugar-acid reaction system[J]. Science and Technology of Food Industry, 2022, 43(2): 93−100. doi: 10.13386/j.issn1002-0306.2021040327
|
[23] |
张泽宇, 曹雁平, 朱雨辰. 缓解食品中丙烯酰胺和5-羟甲基糠醛形成的研究进展[J]. 食品工业科技,2020,41(2):324−333, 347. [ZHANG Z Y, CAO Y P, ZHU Y C. Mitigation strategies on acrylamide and 5-hydroxymethylfurfural in foods[J]. Science and Technology of Food Industry,2020,41(2):324−333, 347. doi: 10.13386/j.issn1002-0306.2020.12.054
ZHANG Z Y, CAO Y P, ZHU Y C. Mitigation strategies on acrylamide and 5-hydroxymethylfurfural in foods[J]. Science and Technology of Food Industry, 2020, 41(2): 324−333+347. doi: 10.13386/j.issn1002-0306.2020.12.054
|
[24] |
VHANGANI L N, WYK J V. Antioxidant activity of Maillard reaction products (MRPs) derived from fructose–lysine and ribose–lysine model systems[J]. Food Chemistry,2013,137(1−4):92−98. doi: 10.1016/j.foodchem.2012.09.030
|
[25] |
ERIC K, RAYMOND L V, ABBAS S, et al. Temperature and cysteine addition effect on formation of sunflower hydrolysate Maillard reaction products and corresponding influence on sensory characteristics assessed by partial least square regression[J]. Food Research International,2014,57:242−258. doi: 10.1016/j.foodres.2014.01.030
|
[26] |
朱秀清, 雷文华, 黄雨洋, 等. 5-羟甲基糠醛在食品中的变化及其安全性研究进展[J]. 食品安全质量检测学报,2022,13(15):4983−4991. [ZHU X Q, LEI W H, HUANG Y Y, et al. Research progress in changes of 5-hydroxymethylfurfural in food and its satety[J]. Journal of Food Safety and Quality,2022,13(15):4983−4991. doi: 10.3969/j.issn.2095-0381.2022.15.spaqzljcjs202215029
ZHU X Q, LEI W H, HUANG Y Y, et al. Research progress in changes of 5-hydroxymethylfurfural in food and its satety[J]. Journal of Food Safety and Quality, 2022, 13(15): 4983−4991. doi: 10.3969/j.issn.2095-0381.2022.15.spaqzljcjs202215029
|
[27] |
ZHANG Y, SONG Y, HU X, et al. Effects of sugars in batter formula and baking conditions on 5-hydroxymethylfurfural and furfural formation in sponge cake models[J]. Food Research International,2012,49:439−445. doi: 10.1016/j.foodres.2012.07.012
|
[28] |
XING Q, MA Y, FU X, et al. Effects of heat treatment, homogenization pressure, and overprocessing on the content of furfural compounds in liquid milk[J]. Journal of Agricultural and Food Chemistry,2020,100:5276−5282. doi: 10.1002/jsfa.10578
|
[29] |
曾世通, 卢斌斌, 李鹏, 等. 丙氨酸与葡萄糖美拉德反应体系中HMF的形成分析[J]. 中国食品学报,2017,17(4):289−293. [ZENG S T, LU B B, LI P, et al. Analysis of the 5-hydroxymethylfurfural formation in Maillard reaction system of alanine and glucose[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(4):289−293. doi: 10.16429/j.1009-7848.2017.04.035
ZENG S T, LU B B, LI P, et al. Analysis of the 5-hydroxymethylfurfural formation in Maillard reaction system of alanine and glucose[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(4): 289−293. doi: 10.16429/j.1009-7848.2017.04.035
|
[30] |
王丹, 况丹妮, 刘若阳, 等. 焦糖化与美拉德反应中DDMP、HMF及糠醛的生成研究[J]. 食品工业科技,2022,43(12):100−107. [WANG D, KUANG D, LIU R, et al. Formation of DDMP, HMF and furfural in caramelization and Maillard reaction[J]. Science and Technology of Food Industry,2022,43(12):100−107. doi: 10.13386/j.issn1002-0306.2021090221
WANG D, KUANG D, LIU R, et al. Formation of DDMP, HMF and furfural in caramelization and Maillard reaction[J]. Science and Technology of Food Industry, 2022, 43(12): 100−107. doi: 10.13386/j.issn1002-0306.2021090221
|
[31] |
ZHONG K, CHEN F, WANG Z, et al. Inactivation and kinetic model for the Escherichia coli treated by a co-axial pulsed electric field[J]. European Food Research and Technology,2005,221(6):752−758. doi: 10.1007/s00217-005-0015-0
|
[32] |
SANTILLANA FARAKOS S M, FRANK J F, SCHAFFNER D W. Modeling the influence of temperature, water activity and water mobility on the persistence of Salmonella in low-moisture foods[J]. International Journal of Food Microbiology,2013,166(2):280−293. doi: 10.1016/j.ijfoodmicro.2013.07.007
|
[33] |
XING Q, FU X, LIU Z, et al. Contents and evolution of potential furfural compounds in milk-based formula, ultra-high temperature milk and pasteurised yoghurt[J]. Internaitonal Dairy Journal,2021,120:105086. doi: 10.1016/j.idairyj.2021.105086
|
[34] |
邢倩倩. 高效液相色谱法测定干酪和炼乳中糠醛类化合物含量[J]. 乳业科学与技术,2021,44(1):28−32. [XING Q. Determination of furfural compounds in cheese and condensed milk by high performance liquid chromatography[J]. Journal of Dairy Science and Technology,2021,44(1):28−32. doi: 10.15922/j.cnki.jdst.2021.01.006
XING Q. Determination of furfural compounds in cheese and condensed milk by high performance liquid chromatography[J]. Journal of Dairy Science and Technology, 2021, 44(1): 28−32. doi: 10.15922/j.cnki.jdst.2021.01.006
|
[35] |
张玉玉, 张兴, 章慧莺, 等. 3种单糖模拟体系中5-羟甲基糠醛的形成动力学分析[J]. 食品科学,2014,35(17):41−47. [ZHANG Y Y, ZHANG X, ZHANG H Y, et al. Kinetic studies on 5-hydroxymethylfurfural formation in three kinds of monosaccharide solution model systems during thermal processing[J]. Food Science,2014,35(17):41−47. doi: 10.7506/spkx1002-6630-201417009
ZHANG Y Y, ZHANG X, ZHANG H Y, et al. Kinetic studies on 5-hydroxymethylfurfural formation in three kinds of monosaccharide solution model systems during thermal processing[J]. Food Science, 2014, 35(17): 41−47. doi: 10.7506/spkx1002-6630-201417009
|
[36] |
JALBOUT A F, ROY A K, SHIPAR A H, et al. Density functional computational studies on the glucose and glycine Maillard reaction: Formation of the Amadori rearrangement products[J]. International Journal of Quantum Chemistry,2008,108(3):589−597. doi: 10.1002/qua.21438
|
[37] |
REN G R, ZHAO L J, SUN Q, et al. Explore the reaction mechanism of the Maillard reaction: A density functional theory study[J]. Journal of Molecular Modeling,2015,21:132. doi: 10.1007/s00894-015-2674-5
|
[38] |
CAPUANO E, FOGLIANO V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies[J]. LWT-Food Science and Technology,2011,44(4):793−810. doi: 10.1016/j.lwt.2010.11.002
|
[39] |
AKTAG I G, GOKMEN V. Multiresponse kinetic modelling of alpha-dicarbonyl compounds formation in fruit juices during storage[J]. Food Chemistry,2020,320:126620. doi: 10.1016/j.foodchem.2020.126620
|
[40] |
KAVOUSI P, MIRHOSSEINI H, GHAZALI H, et al. Formation and reduction of 5-hydroxymethylfurfural at frying temperature in model system as a function of amino acid and sugar composition[J]. Food Chemistry,2015,182:164−170. doi: 10.1016/j.foodchem.2015.02.135
|
[41] |
GLATT H, SCHNEIDER H, MURKOVIC M, et al. Hydroxymethyl-substituted furans: Mutagenicity in Salmonella typhimurium strains engineered for expression of various human and rodent sulphotransferases[J]. Mutagenesis,2012,271:41−48.
|
[42] |
AIDA T M, TAJIMA K, WATANABE M, et al. Reactions of d-fructose in water at temperatures up to 400 °C and pressures up to MPa[J]. The Journal of Supercritical Fluids,2007,42(1):110−119.
|
[43] |
ASGHARI F S, YOSHIDA H. Kinetics of the decomposition of fructose catalyzed by hydrochloric acid in subcritical water: Formation of 5-hydroxymethylfurfural, levulinic, and formic acids[J]. Industrial and Engineering Chemistry Research,2007,46(23):7703−7710. doi: 10.1021/ie061673e
|
1. |
刘一江,方芳. 高盐稀态酱油发酵过程褐变类型及影响褐变糖类的研究. 食品与发酵工业. 2025(02): 99-104 .
![]() | |
2. |
魏玉磊,许明磊,崔宏伟,田雷,张忠锋,杜咏梅,周静,赵昆,侯小东. 烤烟烟花游离氨基酸组成及在发育过程中的变化研究. 中国烟草科学. 2025(01): 81-86 .
![]() | |
3. |
阿丽耶·司马义,热伊汉古丽·萨地克,黄蓉,冯作山,阿衣古丽·阿力木. 羊肉蛋白酶解工艺优化及酶解液中氨基酸含量分析. 食品研究与开发. 2024(01): 92-98 .
![]() | |
4. |
芦鑫,张丽霞,孙强,游静,黄纪念. 配料组成对高温芝麻饼粕蛋白酶解物制备肉味香精的影响. 食品工业科技. 2024(14): 50-61 .
![]() |