NAN Xijun, ZHOU Quancheng, LI Yajie, et al. Establishment of Models for Maturity Discrimination and Polyphenol Content Determination of Aronia melanocarpa Using the Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(15): 292−301. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090141.
Citation: NAN Xijun, ZHOU Quancheng, LI Yajie, et al. Establishment of Models for Maturity Discrimination and Polyphenol Content Determination of Aronia melanocarpa Using the Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(15): 292−301. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090141.

Establishment of Models for Maturity Discrimination and Polyphenol Content Determination of Aronia melanocarpa Using the Hyperspectral Technology

More Information
  • Received Date: September 14, 2022
  • Available Online: June 05, 2023
  • Models for maturity discrimination and polyphenol content determination of Aronia melanocarpa (AM) were established to nondestructively determinethe maturityand polyphenol content of AM based on the hyperspectral imaging (HSI) technology. The HSI technology was adopted to collect the image information of Fukangyuan No. 1 AM in different maturity levels, and the Folin-Ciocalteu colorimetric method was employed to determine the polyphenol content. The Monte Carlo method was used to eliminate the outliers. The original image information was preprocessed with the following procedures: Moving average, median filter, normalize, baseline calibration, multiple scattering correction, detrending, and standard normal variate. Meanwhile, the sample set partitioning based on joint x-y distance method was applied to divide the samples. The competitive adaptive reweighting sampling and uninformative variable elimination method were selected to extract the feature wavelengths, based on which the partial least squares model (PLS) and support vector machine (SVM) model were established and compared. The results showed that the UVE-SVM model after multiple scattering correction showed the best performance among all established discriminant models, with the comprehensive recognition rate of 94.62%, Rc2 of 0.9712, and accuracy of 100%. The CARS-SVM model after median filter exhibited the best efficiency in detection of polyphenol content, with the Rc2 of 0.8331. In addition, this work proved that the polyphenol content in AM was visual. This work provided a theoretical basis for the application of HSI technology in berry industry.
  • [1]
    王柳, 许一鸣, 牟贺, 等. 黑果腺肋花楸功效及药用食用研究进展[J]. 现代食品,2018(7):53−56. [WANG L, XU Y M, MOU H, et al. Research progress on the efficacy and medicinal edibility of Aronia melanocarpa Elliot[J]. Modern Food,2018(7):53−56.

    WANG L, XU Y M, MOU H, et al. Research progress on the efficacy and medicinal edibility of Aronia melanocarpa Elliot[J]. Modern Food, 2018(7): 53-56.
    [2]
    KULLING S E, RAWEL H M. Chokeberry (Aronia melanocarpa): A review on the characteristic components and potential health effects[J]. Planta Medica,2008,74(13):1625−1634. doi: 10.1055/s-0028-1088306
    [3]
    孙婉婷, 王赛, 王猛, 等. 近年来国外黑果腺肋花楸提取纯化及功能作用研究进展[J]. 食品工业,2019,40(11):271−274. [SUN W T, WANG S, WANG M, et al. Research progress of extraction, purification and function of overseas Aronia melanocarpa in recent years[J]. The Food Industry,2019,40(11):271−274.

    SUN W T, WANG S, WANG M, et al. Research progress of extraction, purification and function of overseas Aronia melanocarpa in recent years[J]. The Food Industry, 2019, 40(11): 271-274.
    [4]
    YU W, GAO J, HAO R, et al. Effects of simulated digestion on black chokeberry (Aronia melanocarpa (Michx.) Elliot) anthocyanins and intestinal flora[J]. Journal of Food Science and Technology,2021,58(4):1511−1523. doi: 10.1007/s13197-020-04664-3
    [5]
    CHEN J, ZHU J, MENG X. Aronia melanocarpa anthocyanin extracts are an effective regulator of suppressor of cytokine signaling 3-dependent insulin resistance in HepG2 and C2C12 cells[J]. Journal of Functional Foods,2020,75:104258−104258. doi: 10.1016/j.jff.2020.104258
    [6]
    CUI Y, LIN Y, MENG X, et al. Cyanidin-3-galactoside from Aronia melanocarpa ameliorates PM10 induced pulmonary injury by modulating M1/M2 macrophage polarization and NRF2/Sirt1 MAPK signaling[J]. Journal of Functional Foods,2021,78(1):104363−104363.
    [7]
    DENEV P, CIZ M, KRATCHANOVA M, et al. Black chokeberry (Aronia melanocarpa) polyphenols reveal different antioxidant, antimicrobial and neutrophil-modulating activities[J]. Food Chemistry,2019,284:108−117. doi: 10.1016/j.foodchem.2019.01.108
    [8]
    DELGADO A M, ISSAOUI M, CHAMMEM N. Analysis of main and healthy phenolic compounds in foods[J]. Journal of AOAC International,2019,102(5):1356−1364. doi: 10.5740/jaoacint.19-0128
    [9]
    邹小波, 徐艺伟, 陈武, 等. 高光谱图像技术检测枇杷叶片三萜酸含量及叶面分布[J]. 现代食品科技,2015(9):263−267,288. [ZOU X B, XU Y W, CHEN W, et al. Measurement of triterpenic acid content and its distribution in loquat leaves based on the hyperspectral imaging technique[J]. Modern Food Science and Technology,2015(9):263−267,288.

    ZOU X B, XU Y W, CHEN W, et al. Measurement of triterpenic acid content and its distribution in loquat leaves based on the hyperspectral imaging technique[J]. Modern Food Science and Technology, 2015(9): 263-267, 288.
    [10]
    李军宇, 张淑娟, 张学豪, 等. 李果实成熟度的高光谱成像判别研究[J]. 农机化研究,2017(12):141−145. [LI J Y, ZHANG S J, ZHANG X H, et al. Research on the hyperspectral imaging judgment of the plum maturity[J]. Journal of Agricultural Mechanization Research,2017(12):141−145. doi: 10.13427/j.cnki.njyi.2017.12.027

    LI J Y, ZHANG S J, ZHANG X H, et al. Research on the hyperspectral imaging judgment of the plum maturity[J]. Journal of Agricultural Mechanization Research, 2017(12): 141-145. doi: 10.13427/j.cnki.njyi.2017.12.027
    [11]
    杨晓玉, 刘贵珊, 丁佳兴, 等. 灵武长枣VC含量的高光谱快速检测研究[J]. 光谱学与光谱分析,2019,39(1):230−234. [YANG X Y, LIU G S, DING J X, et al. A rapid evaluation of VC content on Lingwu long jujube using hyperspectral technique[J]. Spectroscopy and Spectral Analysis,2019,39(1):230−234.

    YANG X Y, LIU G S, DING J X, et al. A rapid evaluation of VC content on Lingwu long jujube using hyperspectral technique[J]. Spectroscopy and Spectral Analysis, 2019, 39(1): 230-234.
    [12]
    YANG Y C, SUN D W, PU H, et al. Rapid detection of anthocyanin content in lychee pericarp during storage using hyperspectral imaging coupled with model fusion[J]. Postharvest Biology & Technology,2015,103:55−65.
    [13]
    张成霞, 韦庆翠, 徐秀琴, 等. 黑果腺肋花楸在泰州地区引种栽培适应性研究[J]. 湖南农业科学,2020(1):7−10. [ZHANG C X, WEI Q C, XU X Q, et al. Study on the adaptability of introduction and cultivation of Aronia melanocarpa in Taizhou[J]. Hunan Agricultural Sciences,2020(1):7−10. doi: 10.16498/j.cnki.hnnykx.2020.001.003

    ZHANG C X, WEI Q C, XU X Q, et al. Study on the adaptability of introduction and cultivation of Aronia melanocarpa in Taizhou[J]. Hunan Agricultural Sciences, 2020(1): 7-10. doi: 10.16498/j.cnki.hnnykx.2020.001.003
    [14]
    张东为, 龙忠伟, 张海旺, 等. 黑果腺肋花楸果实内含物变化规律研究[J]. 植物学研究,2021,10(4):568−575. [ZHANG D W, LONG Z W, ZHANG H W, et al. Study on the changes of contents in Aronia melanocarpa fruit[J]. Botanical Research,2021,10(4):568−575. doi: 10.12677/BR.2021.104071

    ZHANG D W, LONG Z W, ZHANG H W, et al. Study on the changes of contents in Aronia melanocarpa fruit[J]. Botanical Research, 2021, 10(4): 568-575. doi: 10.12677/BR.2021.104071
    [15]
    丛龙娇, 史锐, 吴鹏, 等. 不同产地黑果腺肋花楸果实中总多酚, 总黄酮含量测定[J]. 辽宁中医药大学学报,2021,23(1):37−40. [CONG L J, SHI R, WU P, et al. Determination of total polyphenols and total flavonoids in fruits of Heiguoxianleihuaqiu (Aronia melanocarpa) from different habitats[J]. Journal of Liaoning University of Traditional Chinese Medicine,2021,23(1):37−40.

    CONG L J, SHI R, WU P, et al. Determination of total polyphenols and total flavonoids in fruits of Heiguoxianleihuaqiu(Aronia melanocarpa)from different habitats[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2021, 23(1): 37-40.
    [16]
    王超鹏, 黄文倩, 樊书祥, 等. 基于高光谱成像技术与CARS算法的玉米种子含水率检测[J]. 激光与光电子学进展,2016,53(12):254−261. [WANG C P, HUANG W Q, FAN S X, et al. Moisture content detection of maize kernels based on hyperspectral imaging technology and CARS[J]. Laser & Optoelectronics Progress,2016,53(12):254−261.

    WANG C P, HUANG W Q, FAN S X, et al. Moisture content detection of maize kernels based on hyperspectral imaging technology and CARS[J]. Laser & Optoelectronics Progress, 2016, 53(12): 254-261.
    [17]
    金诚谦, 郭榛, 张静, 等. 大豆水分含量的高光谱无损检测及可视化研究[J]. 光谱学与光谱分析,2022,42(10):3052−3057. [JIN C Q, GUO Z, ZHANG J, et al. Non-destructive detection and visualization of soybean moisture content using hyperspectral technique[J]. Spectroscopy and Spectral Analysis,2022,42(10):3052−3057. doi: 10.3964/j.issn.1000-0593(2022)10-3052-06

    JIN C Q, GUO Z, ZHANG J, et al. Non-destructive detection and visualization of soybean moisture content using hyperspectral technique[J]. Spectroscopy and Spectral Analysis, 2022, 42(10): 3052-3057. doi: 10.3964/j.issn.1000-0593(2022)10-3052-06
    [18]
    李佛琳, 赵春江 王纪华, 等. 不同成熟度烤烟鲜叶的高光谱响应及其判别分析[J]. 福建农林大学学报:自然科学版,2008,37(6):565−569. [LI F L, ZHAO C J, WANG J H, et al. Spectral characteristic of flue-cured Virginia tobacco leaves of different maturity grades and spectra discriminant classification[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition,2008,37(6):565−569.

    LI F L, ZHAO C J, WANG J H, et al. Spectral characteristic of flue-cured Virginia tobacco leaves of different maturity grades and spectra discriminant classification[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2008, 37(6): 565-569.
    [19]
    杨东, 陆安祥, 王纪华. 高光谱成像技术定量可视化检测熟牛肉中挥发性盐基氮的含量[J]. 现代食品科技,2017,33(9):257−264. [YANG D, LU A X, WANG J H, et al. Quantification and visualization of total volatile basic nitrogen content of cooked beef by hyperspectral imaging technique[J]. Modern Food Science and Technology,2017,33(9):257−264.

    YANG D, LU A X, WANG J H, et al. Quantification and visualization of total volatile basic nitrogen content of cooked beef by hyperspectral imaging technique[J]. Modern Food Science and Technology , 2017, 33(9): 257-264.
    [20]
    沈东旭, 洪明坚, 董家林. 基于神经网络的拉曼光谱波长选择方法[J]. 光谱学与光谱分析,2020,40(11):3457−3462. [SHEN D X, HONG M J, DONG J L. Raman spectrum wavelength selection method based on neural network[J]. Spectroscopy and Spectral Analysis,2020,40(11):3457−3462.

    SHEN D X, HONG M J, DONG J L. Raman spectrum wavelength selection method based on neural network[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3457-3462.
    [21]
    张晶晶. 基于高光谱成像技术的杏成熟度判别研究[D]. 山西: 山西农业大学, 2015.

    ZHANG J J. Maturity discrimination model of apricot based on hyperspectral imaging technology[D]. Shanxi: Shanxi Agricultural University, 2015.
    [22]
    李瑞, 傅隆生. 基于高光谱图像的蓝莓糖度和硬度无损测量[J]. 农业工程学报,2017,33(S1):362−366. [LI R, FU L S. Nondestructive measurement of firmness and sugar content of blueberries based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(S1):362−366.

    LI R, FU L S. Nondestructive measurement of firmness and sugar content of blueberries based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 362-366.
    [23]
    李伟, 罗华平, 索玉婷, 等. 竞争性自适应加权采样算法和连续投影算法在南疆冬枣水分模型中的分析[J]. 新疆农机化,2019(5):20−23. [LI W, LUO H P, SUO Y T, et al. Competitive adaptive weighted sampling algorithm and continuous projection algorithm in water model of Southern Xinjiang winter jujube[J]. Xinjiang Agricultural Mechanization,2019(5):20−23. doi: 10.13620/j.cnki.issn1007-7782.2019.05.005

    LI W, LUO H P, SUO Y T, et al. Competitive adaptive weighted sampling algorithm and continuous projection algorithm in water model of Southern Xinjiang winter jujube[J]. Xinjiang Agricultural Mechanization, 2019(5): 20-23. doi: 10.13620/j.cnki.issn1007-7782.2019.05.005
    [24]
    李鑫, 汤卫荣, 张永辉, 等. 基于高光谱成像技术的烟叶田间成熟度判别模型[J]. 烟草科技,2022,55(7):17−24. [LI X, TANG W R, ZHANG Y H, et al. Discriminant model for field maturity of tobacco leaves based on hyperspectral imaging technology[J]. Tobacco Science & Technology,2022,55(7):17−24.

    LI X, TANG W R, ZHANG Y H, et al. Discriminant model for field maturity of tobacco leaves based on hyperspectral imaging technology[J]. Tobacco Science & Technology, 2022, 55(7): 17-24.
    [25]
    张骁, 闫岩, 王文辉, 等. 基于小波分析的水稻籽粒直链淀粉含量高光谱预测[J]. 作物学报,2021,47(8):1563−1580. [ZHANG X, YAN Y, WANG W H, et al. Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice[J]. Acta Agronomica Sinica,2021,47(8):1563−1580.

    ZHANG X, YAN Y, WANG W H, et al. Application of continuous wavelet analysis to laboratory reflectance spectra for the prediction of grain amylose content in rice[J]. Acta Agronomica Sinica, 2021, 47(8): 1563-1580.
    [26]
    李宗飞, 陈兵, 苏继霞, 等. 基于高光谱数据的滴灌甜菜叶片全氮含量估算[J]. 作物学报,2020,46(4):557−570. [LI Z F, CHEN B, SU J X, et al. Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index[J]. Acta Agronomica Sinica,2020,46(4):557−570.

    LI Z F, CHEN B, SU J X, et al. Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index[J]. Acta Agronomica Sinica, 2020, 46(4): 557-570.
    [27]
    郭志明, 赵春江, 黄文倩, 等. 苹果糖度高光谱图像可视化预测的光强度校正方法[J]. 农业机械学报,2015,46(7):227−232. [GUO Z M, ZHAO C J, HUANG W Q, et al. Intensity correction of visualized prediction for sugar content in apple using hyperspectral imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(7):227−232.

    GUO Z M, ZHAO C J, HUANG W Q, et al. Intensity correction of visualized prediction for sugar content in apple using hyperspectral imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 227-232.
    [28]
    WANG C, WANG S, HE X, et al. Combination of spectra and texture data of hyperspectral imaging for prediction and visualization of palmitic acid and oleic acid contents in lamb meat[J]. Meat Science,2020,169:108194−108194.
  • Cited by

    Periodical cited type(3)

    1. 王露,蔡雷,刘奇华,崔春. 花椒籽粕蛋白质的酶提工艺研究. 中国调味品. 2025(01): 206-209 .
    2. 陶静,翁霞,王喜珠. 甘谷伏椒挥发油成分及抗氧化活性研究. 中国调味品. 2024(04): 79-84 .
    3. 李宁,梁世岳,刘正群,张敏,郑梓,王雪梅,闫峻,穆淑琴. 花椒籽对蛋鸡生产性能、血清指标及蛋品质的影响. 饲料研究. 2024(18): 35-39 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (117) PDF downloads (16) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return