Citation: | HE Yamei, LIU Zhenyang, ZHENG Wan, et al. Preliminary Study of Reaction Conditions for the Synthesis of AA-2G by Cyclodextrin Glucosyltransferase[J]. Science and Technology of Food Industry, 2023, 44(15): 203−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090140. |
[1] |
苏桂棋, 黄和林, 蒋娜, 等. 维生素C的作用及常见不良反应[J]. 世界最新医学信息文摘,2019,19(8):120−121, 125. [SU G Q, HUANG H L, JIANG N, et al. The role of vitamin C and common adverse reactions[J]. World Latest Medical Information Digest,2019,19(8):120−121, 125. doi: 10.19613/j.cnki.1671-3141.2019.08.056
SU G Q, HUANG H L, JIANG N, et al. The role of vitamin C and common adverse reactions[J]. World Latest Medical Information Digest, 2019, 19(8): 120-121, 125. doi: 10.19613/j.cnki.1671-3141.2019.08.056
|
[2] |
NAIDU K A. Vitamin C in human health and disease is still a mystery? An overview[J]. Nutrition Journal,2003,2(1):7. doi: 10.1186/1475-2891-2-7
|
[3] |
饶建华, 韩璐, 张自萍. 维生素C糖苷类衍生物的研究进展[J]. 中国新药杂志,2012,21(7):761−766. [RAO J H, HAN L, ZHANG Z P. Research progress of vitamin C glycoside derivatives[J]. China Journal of New Drugs,2012,21(7):761−766.
RAO J H, HAN L, ZHANG Z P. Research progress of vitamin C glycoside derivatives[J]. China Journal of New Drugs, 2012, 21(7): 761-766.
|
[4] |
HAN R, LIU L, LI J, et al. Functions, applications and production of 2-O-D-glucopyranosyl-L-ascorbic acid[J]. Applied Microbiology and Biotechnology,2012,95(2):313−320. doi: 10.1007/s00253-012-4150-9
|
[5] |
李标, 唐双焱. 2-O-α-D-吡喃葡萄糖基抗坏血酸研究进展[J]. 广西科学,2017,24(1):48−53. [LI B, TANG S Y. Research progress of 2-O-α-D-glucopyranosyl-ascorbic acid[J]. Guangxi Science,2017,24(1):48−53.
LI B, TANG S Y. Research progress of 2-O-α-D-glucopyranosyl-ascorbic acid[J]. Guangxi Science, 2017, 24(1): 48-53.
|
[6] |
WAKAMIYA H, SUZUKI E, YAMAMOTO I, et al. Vitamin C activity of 2-O-alpha-D-glucopyranosyl-L-ascorbic acid in guinea pigs[J]. Journal of Nutritional Science & Vitaminology,1992,38(3):235−245.
|
[7] |
ZHANG W, HUANG Q, YANG R, et al. 2-O-D-glucopyranosyl-L-ascorbic acid: Properties, production, and potential application as a substitute for L-ascorbic acid[J]. Journal of Functional Foods,2021,82(7):104481.
|
[8] |
TOYODAONO Y, MAEDA M, NAKAO M, et al. 2-O-(beta-D-glucopyranosyl) ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit[J]. Journal of Agricultural and Food Chemistry,2004,52(7):2092−2096. doi: 10.1021/jf035445w
|
[9] |
YAMAMOTO I, MUTO N, NAGATA E, et al. Formation of a stable L-ascorbic acid alpha-glucoside by mammalian alpha-glucosidase-catalyzed transglucosylation[J]. Biochimica et Biophysica Acta,1990,1035(10):44−50.
|
[10] |
TANAKA M. Characterization of Bacillus stearothermophilus cyclodextrin glucanotransferase in ascorbic acid 2-O-alpha-glucoside formation[J]. Biochimica et Biophysica Acta,1991,1078(2):127−132. doi: 10.1016/0167-4838(91)99000-1
|
[11] |
LEE S, LIM J, LEE J H, et al. Ascorbic acid 2-glucoside stably promotes the primitiveness of embryonic and mesenchymal stem cells through ten-eleven translocation and cAMP-responsive element-binding protein-1-dependent mechanisms[J]. Antioxidants & Redox Signaling,2004,32(1):35−59.
|
[12] |
GUDIMINCHI R K, NIDETZKY P. Walking a fine line with sucrose phosphorylase: efficient single-step biocatalytic production of 1-ascorbic acid 2-glucoside from sucrose[J]. Chembiochem:a European Journal of Chemical Biology,2017,18(14):1387−1390. doi: 10.1002/cbic.201700215
|
[13] |
MUKAI K, TSUSAKI K, KUBOTA M, et al. Process for producing 2-O-alpha-D-glucopyranosyl-L-ascorbic acid: Europe, EP20030741243[P]. 2003-07-07.
|
[14] |
黄敏, 裘娟萍. 生物转化法生产2-O-α-D-吡喃型葡萄糖基L-抗坏血酸的研究进展[J]. 工业微生物,2004(2):41−44. [HUANG M, QIU J P. Advances in research of preparing 2-O-α-D-glucopyranosyl-L-ascorbic acid by biological transformation[J]. Industrial Microbiology,2004(2):41−44. doi: 10.3969/j.issn.1001-6678.2004.02.010
HUANG M, QIU J P. Advances in research of preparing 2-O-α-D-glucopyranosyl-L-ascorbic acid by biological transformation[J]. Industrial Microbiology, 2004, (2): 41-44. doi: 10.3969/j.issn.1001-6678.2004.02.010
|
[15] |
ZHANG Z, LI J, LIU L, et al. Enzymatic transformation of 2-O-α-D-glucopyranosyl-L-ascorbic acid by α-cyclodextrin glucanotransferase from recombinant Escherichia coli[J]. Biotechnology & Bioprocess Engineering,2011,16(1):107−113.
|
[16] |
TAO X, SU L, WU J. Current studies on the enzymatic preparation 2-O-α-D-glucopyranosyl-L-ascorbic acid with cyclodextrin glycosyltransferase[J]. Critical Reviews in Biotechnology,2018,39(2):1−9.
|
[17] |
陶秀梅. Bacillus stearothermophilus NO2环糊精葡萄糖基转移酶的分子改造及制备AA-2G的研究[D]. 无锡: 江南大学, 2020.
TAO X M. Molecular modification of Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase and research on the preparation of AA-2G[D]. Wuxi: Jiangnan University, 2020.
|
[18] |
李晓涵, 郝建华, 郭姣梅, 等. 环糊精葡萄糖基转移酶高效异源表达研究进展[J]. 微生物学通报,2020,47(2):615−622. [LI X H, HAO J H, GUO J M, et al. Advance in high-level heterologous expression of cyclodextrin glucosyltransferase[J]. Bulletin of Microbiology,2020,47(2):615−622. doi: 10.13344/j.microbiol.china.190295
LI X H, HAO J H, GUO J M, et al. Advance in high-level heterologous expression of cyclodextrin glucosyltransferase[J]. Bulletin of Microbiology, 2020, 47(2): 615-622. doi: 10.13344/j.microbiol.china.190295
|
[19] |
余磊, 李骥璇, 王忆茗, 等. 蔗糖磷酸化酶全细胞催化AA-2G的条件优化[J]. 现代生物医学进展,2017,17(14):2601−2605. [YU L, LI J X, WANG Y M, et al. Optimization of whole-cell synthesis of AA-2G by sucrose phosphorylase[J]. Advances in Modern Biomedicine,2017,17(14):2601−2605. doi: 10.13241/j.cnki.pmb.2017.14.001
YU L, LI J X, WANG Y M, et al. Optimization of whole-cell synthesis of AA-2G by sucrose phosphorylase[J]. Advances in Modern Biomedicine, 2017, 17(14): 2601-2605. doi: 10.13241/j.cnki.pmb.2017.14.001
|
[20] |
郭姣梅. 海洋环糊精葡萄糖基转移酶的固定化及其性能研究[D]. 上海: 上海海洋大学, 2020.
GUO J M. Study on immobilization of marine cyclodextrin glucosyltransferase and its properties[D]. Shanghai: Shanghai Ocean University, 2020.
|
[21] |
郑丹妮. Bacillus sp. FJAT-44876 γ-环糊精葡萄糖基转移酶的表征及热稳定性提升研究[D]. 无锡: 江南大学, 2020.
ZHENG D N. Characterization and thermostability improved of γ-CGTase from Bacillus sp. FJAT-44876[D]. Wuxi: Jiangnan University, 2020.
|
[22] |
王蕾. 环糊精葡萄糖基转移酶的产物特异性分子改造及发酵制备研究[D]. 无锡: 江南大学, 2018.
WANG L. Product specificity engineering and fermentation of cyclodextrin glycosyltransferase[D]. Wuxi: Jiangnan University, 2018.
|
[23] |
李晓涵, 郭姣梅, 宋凯等. Bacillus sp. Y112环糊精葡萄糖基转移酶位点R81定点突变提高产物特异性[J]. 食品科学,2021,42(10):133−138. [LI X H, GUO J M, SONG K, et al. Improvement of the product specificity of Bacillus sp. Y112 cyclodextrin glucosyltransferase by site-directed mutagenesis of arginine 81[J]. Food Science,2021,42(10):133−138. doi: 10.7506/spkx1002-6630-20200205-031
LI X H, GUO J M, SONG K, et al. Improvement of the product specificity of Bacillus sp. Y112 cyclodextrin glucosyltransferase by site-directed mutagenesis of arginine 81[J]. Food Science, 2021, 42(10): 133-138. doi: 10.7506/spkx1002-6630-20200205-031
|
[24] |
左方圆. Bacillus stearothermophilus NO2环糊精葡萄糖基转移酶的分子改造及制备α-环糊精的研究[D]. 无锡: 江南大学, 2022.
ZUO F Y. Molecular modification of Bacillus stearothermophilus NO2 cyclodextrin glucosyltransferase and preparation of α-cyclodextrin[D]. Wuxi: Jiangnan University, 2022.
|
[25] |
柴宝成. 分子改造环糊精葡萄糖基转移酶合成糖基化染料木素[D]. 无锡: 江南大学, 2021.
CHAI B C. Engineering of cyclodextrin glucosyltransferase for the synthesis of glycosylated genistein[D]. Wuxi: Jiangnan University, 2021.
|
[26] |
花敬涵. β-环糊精糖基转移酶的催化机制及理性改造研究[D]. 合肥: 合肥工业大学, 2019.
HUA J H. Catalytic mechanism and rational transformation of β-cyclodextrin glycosyltransferase[D]. Hefei: Hefei University of Technology, 2019.
|
[27] |
VIOLAINE, GERARD, EMEL, et al. Ascorbic acid derivatives as potential substitutes for ascorbic acid to reduce color degradation of drinks containing ascorbic acid and anthocyanins from natural extracts.[J]. Journal of Agricultural and Food Chemistry,2019,67(43):12061−12071. doi: 10.1021/acs.jafc.9b05049
|
[28] |
AGA H, YONEYAMA M, SAKAI S, et al. Synthesis of 2-O-α-D-glucopyranosyl 1-ascorbic acid by cyclomaltodextrin glucanotransferase from Bacillus stearothermophilus[J]. Journal of the Agricultural Chemical Society of Japan,1991,55(7):1751−17556.
|
[29] |
LIU Z, WU G, WU H. Molecular cloning, and optimized production and characterization of recombinant cyclodextrin glucanotransferase from Bacillus sp. T1[J]. 3 Biotech,2022,12(3):58. doi: 10.1007/s13205-022-03111-8
|
[30] |
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72:248−254. doi: 10.1016/0003-2697(76)90527-3
|
[31] |
TESFAI B T, WU D, CHEN S, et al. Effect of organic solvents on the yield and specificity of cyclodextrins by recombinant cyclodextrin glucanotransferase (CGTase) from Anaerobranca gottschalkii[J]. Journal of Inclusion Phenomena & Macrocyclic Chemistry,2013,77(1-4):147−153.
|
[32] |
VANDERVEEN B A, VANALEBEEK G J, UITDEHAAG J C, et al. The three transglycosylation reactions catalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain 251) proceed via different kinetic mechanisms[J]. European Journal of Biochemistry,2001,267(3):658−665.
|
[33] |
韩瑞枝. 环糊精葡萄糖基转移酶的分子改造及合成糖基化L-抗坏血酸[D]. 无锡: 江南大学, 2013.
HAN R Z. Molecular modification of cyclodextrin glucosyltransferase and synthesis of glycosylated L-ascorbic acid[D]. Wuxi: Jiangnan University, 2013.
|
[34] |
宋凯. 海洋环糊精葡萄糖基转移酶的表达、酶学性质及AA-2G制备的研究[D]. 上海: 上海海洋大学, 2021.
SONG K. Heterogeneous expression, enzyme properties and preparation of AA-2G of cyclodextrin glycosyltransferase[D]. Shanghai: Shanghai Ocean University, 2021.
|
[35] |
张国超, 王岁楼, 吴晓宗. 环糊精葡萄糖转移酶的研究进展[J]. 生物学杂志,2008(2):55−58. [ZHANG G C, WANG S L, WU X Z. Research progress on cyclodextrin glucotransferase[J]. Journal of Biology,2008(2):55−58. doi: 10.3969/j.issn.2095-1736.2008.02.016
ZHANG G C, WANG S L, WU X Z. Research progress on cyclodextrin glucotransferase[J]. Journal of Biology, 2008(2): 55-58. doi: 10.3969/j.issn.2095-1736.2008.02.016
|
[36] |
王月明, 孙万刚, 张斌等. 环糊精及环糊精葡萄糖基转移酶特性研究[J]. 安徽农业科学,2007(27):8430−8431, 8434. [WANG Y M, SUN W G, ZHANG B, et al. Study on the characteristics of cyclodextrin and cyclodextrin glucosyltransferase[J]. Anhui Agricultural Science,2007(27):8430−8431, 8434. doi: 10.3969/j.issn.0517-6611.2007.27.004
WANG Y M, SUN W G, ZHANG B, et al. Study on the characteristics of cyclodextrin and cyclodextrin glucosyltransferase[J]. Anhui Agricultural Science, 2007(27): 8430-8431+8434. doi: 10.3969/j.issn.0517-6611.2007.27.004
|
[37] |
张国宁, 冯婧娴, 杨颖博等. 环糊精葡萄糖基转移酶在天然产物糖基化修饰中的应用[J]. 生物技术通报,2022,38(3):246−255. [ZHANG G N, FENG J X, YANG Y B, et al. Application of cyclodextrin glucosyltransferase in the glycosylation modification of natural products[J]. Biotechnology Bulletin,2022,38(3):246−255. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0642
ZHANG G N, FENG J X, YANG Y B, et al. Application of cyclodextrin glucosyltransferase in the glycosylation modification of natural products[J]. Biotechnology Bulletin, 2022, 38(03): 246-255. doi: 10.13560/j.cnki.biotech.bull.1985.2021-0642
|
[38] |
曹新志, 刘芳, 明红梅等. 酶法合成葡萄糖基-L-抗坏血酸的产酶条件及转化条件优化[J]. 农产品加工(学刊),2008(1):19−22, 28. [CAO X Z, LIU F, MING H M, et al. Optimization of enzyme production and transformation conditions for enzymatic synthesis of glucosyl-L-ascorbic acid[J]. Agricultural Products Processing (Journal),2008(1):19−22, 28.
CAO X Z, LIU F, MING H M, et al. Optimization of enzyme production and transformation conditions for enzymatic synthesis of glucosyl-L-ascorbic acid [J]. Agricultural Products Processing (Journal), 2008(1): 19-22, 28.
|
[39] |
HONG K J, KYUNG M B, SUNG K K. Production of 2-O-α-D-glucopyranosyl-L-ascorbic acid using cyclodextrin glucanotransferase from Paenibacillus sp.[J]. Biotechnology Letters,2001,23(21):1793−1797. doi: 10.1023/A:1012413301061
|
[40] |
EIBAID A, MIAO M, BASHARI M, et al. Biosynthesis of 2-O-α-D-glucopyranosyl-L-ascorbic acid from maltodextrin catalyzed by cyclodextrin glucanotransferase from Bacillus sp. SK13.002[J]. Journal of Food and Nutrition Research,2014,2(4):193−197. doi: 10.12691/jfnr-2-4-10
|
[41] |
黄立萍, 郝建华, 王伟, 等. 2-氧-α-D-葡萄糖基-L-抗坏血酸酶法合成工艺优化[J]. 食品与机械,2018,34(11):7. [HUANG L P, HAO J H, WANG W, et al. Optimization of enzymatic synthesis of 2-O-α-D-glucosyl-L-ascorbate acid[J]. Food and Machinery,2018,34(11):7.
HUANG L P, HAO J H, WANG W, et al. Optimization of enzymatic synthesis of 2-O-α-D-glucosyl-L-ascorbate acid[J]. Food and Machinery, 2018, 34(11): 7.
|
[42] |
邢琳, 张秀华, 钊倩倩, 等. α-环糊精葡萄糖基转移酶的高效表达及酶法制备AA-2G条件优化[J]. 中国生化药物杂志,2016,36(11):5−8. [XING L, ZHANG X H, ZHAO Q Q, et al. High-efficiency expression of α-cyclodextrin glucosyltransferase and optimization of conditions for enzymatic preparation of AA-2G[J]. China Biochemical Medicine,2016,36(11):5−8.
XING L, ZHANG X H, ZHAO Q Q, et al. High-efficiency expression of α-cyclodextrin glucosyltransferase and optimization of conditions for enzymatic preparation of AA-2G[J]. China Biochemical Medicine, 2016, 36(11): 5-8 .
|
[43] |
CHEN S, XIONG Y, SU L, et al. Position 228 in Paenibacillus macerans cyclodextrin glycosyltransferase is critical for 2-O-D-glucopyranosyl-L-ascorbic acid synthesis[J]. Journal of Biotechnology, 2017, 247.
|
[44] |
GUDIMINCHI R K, TOWNS A, VARALWAR S, et al. Enhanced synthesis of 2-O-alpha-D-glucopyranosyl-L-ascorbic acid from alpha-cyclodextrin by a highly disproportionating CGTase[J]. Acs Catalysis,2016,6(3):1606−1615. doi: 10.1021/acscatal.5b02108
|
[45] |
许乔艳, 韩瑞枝, 李江华等. 亚位点+1处突变提高软化类芽胞杆菌环糊精糖基转移酶底物麦芽糊精特异性[J]. 生物工程学报,2014,30(1):98−108. [XU Q Y, HAN R Z, LI J H, et al. Mutation at subsite+1 improves the specificity of maltodextrin as a substrate of cyclodextrin glycosyltransferase from Paenibacillus softening[J]. Chinese Journal of Biological Engineering,2014,30(1):98−108. doi: 10.13345/j.cjb.130401
XU Q Y, HAN R Z, LI J H, et al. Mutation at subsite+1 improves the specificity of maltodextrin as a substrate of cyclodextrin glycosyltransferase from Paenibacillus softening[J]. Chinese Journal of Biological Engineering, 2014, 30(1): 98-108. doi: 10.13345/j.cjb.130401
|
[46] |
张兴荣, 李峰, 贺连智等. 高产β-环糊精葡萄糖基转移酶菌株的筛选、产酶条件优化及酶学性质研究[J]. 中国酿造,2020,39(11):85−91. [ZHANG X R, LI F, HE L Z, et al. Screening and enzyme production condition optimization of high-yield β-CGTase strain and enzymatic property[J]. China Brewing,2020,39(11):85−91. doi: 10.11882/j.issn.0254-5071.2020.11.017
ZHANG X R, LI F, HE L Z, et al. Screening and enzyme production condition optimization of high-yield β-CGTase strain and enzymatic property[J]. China Brewing, 2020, 39 (11): 85-91. doi: 10.11882/j.issn.0254-5071.2020.11.017
|
[47] |
丛远华, 朱沁, 冯春波. 高含量烟酰胺与AA-2G复配体系的水溶液的稳定性研究[J]. 化学与生物工程,2019,36(11):52−57, 63. [CONG Y H, ZHU Q, FENG C B. Stability of aqueous solution of high content nicotinamide and AA2G mixed system[J]. Chemical and Biological Engineering,2019,36(11):52−57, 63.
CONG Y H, ZHU Q, FENG C B. Stability of aqueous solution of high content nicotinamide and AA2G mixed system[J] Chemical and Biological Engineering, 2019, 36 (11): 52-57, 63.
|
[48] |
单丽媛, 刘龙, 李江华等. 利用环糊精糖基转移酶转化合成AA-2G的研究[J]. 食品与生物技术学报,2018,37(1):27−32. [SHAN L Y, LIU L, LI J H, et al. Enzyme synthesis of AA-2G by cyclodextrin glycosyltransferase[J]. Journal of Food Science and Biotechnology,2018,37(1):27−32. doi: 10.3969/j.issn.1673-1689.2018.01.005
SHAN L Y, LIU L, LI J H, et al. Enzyme synthesis of AA-2G by cyclodextrin glycosyltransferase[J]. Journal of Food Science and Biotechnology, 2018, 37(1): 27-32. doi: 10.3969/j.issn.1673-1689.2018.01.005
|
[49] |
黄燕, 杨玉路, 夏伟等. 重组β-环糊精葡萄糖基转移酶生产偶合糖的工艺优化[J]. 生物工程学报,2021,37(4):1415−1424. [HUANG Y, YANG Y L, XIA W, et al. Optimization of maltooligosyl fructofuranosidesproduction by recombinant β-cyclodextrin glycosyltransferase[J]. Chinese Journal Biotechnology,2021,37(4):1415−1424.
HUANG Y, YANG Y L, XIA W, et al. Optimization of maltooligosyl fructofuranosidesproduction by recombinant β-cyclodextrin glycosyltransferase[J]. Chinese Journal Biotechnology, 2021, 37(4): 1415-1424.
|
[50] |
柴宝成, 姜钰琳, 倪晔等. 环糊精葡萄糖基转移酶182位点定点改造催化合成糖基化染料木素[J]. 生物工程学报,2022,38(2):749−759. [CHAI B C, JIANG Y L, NI Y, et al. Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis[J]. Chinese Journal of Biological Engineering,2022,38(2):749−759.
CHAI B C, JIANG Y L, NI Y, et al. Engineering the 182 site of cyclodextrin glucosyltransferase for glycosylated genistein synthesis[J] Chinese Journal of Biological Engineering, 2022, 38 (2): 749-759
|