PENG Zhenzhen, ZHONG Chuanfei, WANG Baogang, et al. Analysis of Anthocyanin Accumulation and Gene Expression of Anthocyanin Synthesis Pathway during Fruit Ripening of 'Benihoppe' Strawberry[J]. Science and Technology of Food Industry, 2023, 44(14): 346−354. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090106.
Citation: PENG Zhenzhen, ZHONG Chuanfei, WANG Baogang, et al. Analysis of Anthocyanin Accumulation and Gene Expression of Anthocyanin Synthesis Pathway during Fruit Ripening of 'Benihoppe' Strawberry[J]. Science and Technology of Food Industry, 2023, 44(14): 346−354. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090106.

Analysis of Anthocyanin Accumulation and Gene Expression of Anthocyanin Synthesis Pathway during Fruit Ripening of 'Benihoppe' Strawberry

More Information
  • Received Date: September 12, 2022
  • Available Online: May 18, 2023
  • To explore the genes related to anthocyanin accumulation and synthesis during the ripening process of strawberry fruit, qualitative and quantitative analysis of anthocyanin substances was conducted using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) on the fruits of four development stages of 'Benihoppe' strawberry: White (WF), initial ripening (IR), part ripening (PR), and full red fruits (FR). The expression level of structural genes in anthocyanin biosynthesis pathway in different development processes was determined to provide a theoretical basis for anthocyanin metabolism and color quality regulation of strawberry fruit. The results showed 24 anthocyanins and four proanthocyanidins in 'Benihoppe' strawberry. With the ripening of the fruit, the total anthocyanin and proanthocyanidin contents gradually increased and decreased, respectively. Pelargonidin and cyanidin were the main differential metabolites in different developmental stages. Among them, pelargonidin-3-O-glucoside, pelargonidin-3-O-rutinoside and cyanidin-3-O-glucoside were the main substances in anthocyanins, accounting for 79.7%, 14.1% and 3.56% of the total anthocyanins at the full maturity of 'Benihoppe' strawberry, respectively. Real-time PCR analysis showed that the transcription levels of the anthocyanin synthesis pathway genes FaPAL1, FaC4H, FaF3H, FaANS, FaUFGT, and FaMYB10 gradually increased with the fruit development. In summary, the anthocyanin content of 'Benihoppe' strawberry fruit gradually accumulates with fruit maturity, and the substances of anthocyanin differential metabolism include pelargonidin and cyanidin. The expression level of structural genes related to anthocyanin synthesis pathway affects the anthocyanin accumulation of fruit.
  • [1]
    辛宇, 孙敬蒙, 张炜煜. 花青素生物活性及制剂的研究进展[J]. 食品工业科技,2021,42(17):413−422. [XIN Y, SUN J, ZHANG W. Research progress of physiological activity and preparations of anthocyanins[J]. Science and Technology of Food Industry,2021,42(17):413−422.

    XIN Y, SUN J, ZHANG W. Research progress of physiological activity and preparations of anthocyanins[J]. Science and Technology of Food Industry, 2021, 42(17): 413−422. (in Chinese with English abstract).
    [2]
    刘恺媛, 王茂良, 辛海波, 等. 植物花青素合成与调控研究进展[J]. 中国农学通报,2021,37(14):41−51. [LIU K Y, WANG M L, XIN H B, et al. Anthocyanin biosynthesis and regulate mechanisms in plants: A review[J]. Chinese Agricultural Science Bulletin,2021,37(14):41−51. doi: 10.11924/j.issn.1000-6850.casb2020-0390

    LIU K Y, WANG M L, XIN H B, et al. Anthocyanin biosynthesis and regulate mechanisms in plants: A review [J]. Chinese Agricultural Science Bulletin, 2021, 37(14): 41-51. doi: 10.11924/j.issn.1000-6850.casb2020-0390
    [3]
    刘淑华, 臧丹丹, 孙燕, 等. 花青素生物合成途径及关键酶研究进展[J]. 土壤与作物,2022,11(3):336−346. [LIU S H, ZANG D D, SUN Y, et al. Research advances on biosynthesis pathway of anthocyanins and relevant key enzymes[J]. Soils and Crops,2022,11(3):336−346. doi: 10.11689/j.issn.2095-2961.2022.03.011

    LIU S H, ZANG D D, SUN Y, et al. Research advances on biosynthesis pathway of anthocyanins and relevant key enzymes[J]. Soils and Crops, 2022, 11(3): 336-346. doi: 10.11689/j.issn.2095-2961.2022.03.011
    [4]
    BURTON-FREEMAN B, SANDHU A, EDIRISINGHE I. Nutraceuticals. Chapter 35-anthocyanins[M]. Boston: Academic Press, 2016: 489-500.
    [5]
    GROTEWOLD E. The genetics and biochemistry of floral pigments[J]. Annual Review of Plant Biology,2006,57:761−778. doi: 10.1146/annurev.arplant.57.032905.105248
    [6]
    DA SILVA F L, ESCRIBANO-BAILÓN M T, PÉREZ ALONSO J J, et al. Anthocyanin pigments in strawberry[J]. LWT - Food Science and Technology,2007,40(2):374−382. doi: 10.1016/j.lwt.2005.09.018
    [7]
    FRASER L G, SEAL A G, MONTEFIORI M, et al. An R2R3 MYB transcription factor determines red petal colour in an Actinidia (kiwifruit) hybrid population[J]. BMC Genomics,2013,14(1):1−19. doi: 10.1186/1471-2164-14-1
    [8]
    POMBO M A, MARTÍNEZ G A, CIVELLO P M. Cloning of FaPAL6 gene from strawberry fruit and characterization of its expression and enzymatic activity in two cultivars with different anthocyanin accumulation[J]. Plant Science,2011,181(2):111−118. doi: 10.1016/j.plantsci.2011.04.012
    [9]
    LUNKENBEIN S, COINER H, de VOS C H R, et al. Molecular characterization of a stable antisense chalcone synthase phenotype in strawberry (Fragaria×ananassa)[J]. Journal of Agricultural and Food Chemistry,2006,54(6):2145−2153. doi: 10.1021/jf052574z
    [10]
    HOFFMANN T, KALINOWSKI G, SCHWAB W. RNAi-induced silencing of gene expression in strawberry fruit (Fragaria×ananassa) by agroinfiltration: A rapid assay for gene function analysis[J]. The Plant Journal,2006,48(5):818−826. doi: 10.1111/j.1365-313X.2006.02913.x
    [11]
    JIANG F, WANG J, JIA H, et al. RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J]. Journal of Plant Growth Regulation,2013,32(1):182−190. doi: 10.1007/s00344-012-9289-1
    [12]
    LIN Y, JIANG L, CHEN Q, et al. Comparative transcriptome profiling analysis of red- and white-fleshed strawberry (Fragaria×ananassa) provides new insight into the regulation of the anthocyanin pathway[J]. Plant and Cell Physiology,2018,59(9):1844−1859.
    [13]
    LIN X, XIAO M, LUO Y, et al. The effect of RNAi-induced silencing of FaDFR on anthocyanin metabolism in strawberry (Fragaria×ananassa) fruit[J]. Scientia Horticulturae,2013,160:123−128. doi: 10.1016/j.scienta.2013.05.024
    [14]
    REDDY A M, REDDY V S, SCHEFFLER B E, et al. Novel transgenic rice overexpressing anthocyanidin synthase accumulates a mixture of flavonoids leading to an increased antioxidant potential[J]. Metabolic Engineering,2007,9(1):95−111. doi: 10.1016/j.ymben.2006.09.003
    [15]
    GRIESSER M, HOFFMANN T, BELLIDO M L, et al. Redirection of flavonoid biosynthesis through the down-regulation of an anthocyanidin glucosyltransferase in ripening strawberry fruit[J]. Plant Physiology,2008,146(4):1528−1539. doi: 10.1104/pp.107.114280
    [16]
    HAN Y, VIMOLMANGKANG S, SORIA-GUERRA R E, et al. Ectopic expression of apple F3′ H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress[J]. Plant Physiology,2010,153(2):806−820. doi: 10.1104/pp.109.152801
    [17]
    HAN Y, VIMOLMANGKANG S, SORIA-GUERRA R E, et al. Introduction of apple ANR genes into tobacco inhibits expression of both CHI and DFR genes in flowers, leading to loss of anthocyanin[J]. Journal of Experimental Botany,2012,63(7):2437−2447. doi: 10.1093/jxb/err415
    [18]
    JAAKOLA L. New insights into the regulation of anthocyanin biosynthesis in fruits[J]. Trends in Plant Science,2013,18(9):477−483. doi: 10.1016/j.tplants.2013.06.003
    [19]
    ZHANG Z, SHI Y, MA Y, et al. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes[J]. Plant Biotechnology Journal,2020,18(11):2267−2279. doi: 10.1111/pbi.13382
    [20]
    LIN-WANG K, MCGHIE T K, WANG M, et al. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca)[J]. Frontiers in Plant Science, 2014, 5.
    [21]
    AHARONI A, De VOS C H R, WEIN M, et al. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco[J]. The Plant Journal,2001,28(3):319−332. doi: 10.1046/j.1365-313X.2001.01154.x
    [22]
    MAO W, HAN Y, CHEN Y, et al. Low temperature inhibits anthocyanin accumulation in strawberry fruit by activating FvMAPK3-induced phosphorylation of FvMYB10 and degradation of Chalcone Synthase 1[J]. The Plant Cell,2022,34(4):1226−1249. doi: 10.1093/plcell/koac006
    [23]
    LEE C, LEE J, LEE J. Relationship of fruit color and anthocyanin content with related gene expression differ in strawberry cultivars during shelf life[J]. Scientia Horticulturae,2022,301:111109. doi: 10.1016/j.scienta.2022.111109
    [24]
    LI D, LUO Z, MOU W, et al. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.)[J]. Postharvest Biology and Technology,2014,90:56−62. doi: 10.1016/j.postharvbio.2013.12.006
    [25]
    XU W, PENG H, YANG T, et al. Effect of calcium on strawberry fruit flavonoid pathway gene expression and anthocyanin accumulation[J]. Plant Physiology and Biochemistry,2014,82:289−298. doi: 10.1016/j.plaphy.2014.06.015
    [26]
    JIANG T, ZHANG M D, WEN C X, et al. Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza bge[J]. BMC Plant Biology,2020,20(1):349. doi: 10.1186/s12870-020-02553-7
    [27]
    YUAN H, ZENG X, SHI J, et al. Time-Course comparative metabolite profiling under osmotic stress in tolerant and sensitive tibetan hulless barley[J]. BioMed Research International,2018,2018:9415409.
    [28]
    SALVATIERRA A, PIMENTEL P, MOYA-LEON M A, et al. Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. Chiloensis[J]. Phytochemistry,2010,71(16):1839−1847. doi: 10.1016/j.phytochem.2010.08.005
    [29]
    李栋. 高浓度CO2处理调控采后草莓花色苷合成机制研究[D]. 杭州: 浙江大学, 2021.

    LI D. The regulation of elevated CO2 on anthocyanin synthesis in postharvest strawberry fruit[D]. Hangzhou: Zhejiang University, 2021.
    [30]
    宋盼, 赵凤莉, 宋艳红, 等. 草莓果实花色苷合成途径相关结构基因及FaMYB10表达模式差异分析[J]. 果树学报,2020,37(11):1636−1646. [SONG P, ZHAO F L, SONG Y H, et al. Expression analysis of FaMYB10 transcription factor and structural genes related to anthocyanin biosynthesis in strawberry (Fragaria×ananassa) fruit[J]. Journal of Fruit Science,2020,37(11):1636−1646.

    SONG P, ZHAO F L, SONG Y H, et al. Expression analysis of FaMYB10 transcription factor and structural genes related to anthocyanin biosynthesis in strawberry (Fragaria×ananassa) fruit[J]. Journal of Fruit Science, 2020, 37(11): 1636-1646.
    [31]
    KADOMURA-ISHIKAWA Y, MIYAWAKI K, TAKAHASHI A, et al. RNAi-mediated silencing and overexpression of the FaMYB1 gene and its effect on anthocyanin accumulation in strawberry fruit[J]. Biologia Plantarum,2015,59(4):677−685. doi: 10.1007/s10535-015-0548-4
    [32]
    HONDA C, MORIYA S. Anthocyanin biosynthesis in apple fruit[J]. The Horticulture Journal,2018,87(3):305−314. doi: 10.2503/hortj.OKD-R01
    [33]
    SUN X, HAN J, FANG J G, et al. Important research progress of coloring molecular mechanisms in grape berry[J]. Plant Physiology Journal,2012,48:333−342.
    [34]
    羊芹, 杜泓璇, 马尧, 等. 柳树叶的原花青素的抗氧化性研究[J]. 西南大学学报(自然科学版),2009,31(6):106−110. [YANG Q, DU H X, MA Y, et al. Study on antioxidantive activity of procyanidins from the leaves of willow[J]. Journal of Southwest University (Natural Science Edition),2009,31(6):106−110.

    YANG Q, DU H X, MA Y, et al. Study on antioxidantive activity of procyanidins from the leaves of willow[J]. Journal of Southwest University (Natural Science Edition), 2009, 31(6): 106-110.
    [35]
    李小乐. 重庆地区四种鲜食葡萄原花青素含量与品质的相关性研究[D]. 重庆: 西南大学, 2012.

    LI X L. Research of the procyanidins and quality relationship of the four grape varieties in Chongqing[D]. Chongqing: Southwest University, 2012.
    [36]
    HÉBERT C, CHARLES M T, GAUTHIER L, et al. Strawberry proanthocyanidins: Biochemical markers for Botrytis cinerea resistance and shelf-life predictability[J]. Acta Horticulturae, 2000: 659-662.
    [37]
    JIANG L, YUE M, LIU Y, et al. Alterations of phenylpropanoid biosynthesis lead to the natural formation of Pinkish-Skinned and White-Fleshed strawberry (Fragaria×ananassa)[J]. International Journal of Molecular Sciences,2022,23(13):7375. doi: 10.3390/ijms23137375
    [38]
    HONDA C, KOTODA N, WADA M, et al. Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin[J]. Plant Physiology and Biochemistry,2002,40(11):955−962. doi: 10.1016/S0981-9428(02)01454-7
    [39]
    HOSSAIN M R, KIM H, SHANMUGAM A, et al. Expression profiling of regulatory and biosynthetic genes in contrastingly anthocyanin rich strawberry (Fragaria×ananassa) cultivars reveals key genetic determinants of fruit color[J]. International Journal of Molecular Sciences,2018,19(3):656. doi: 10.3390/ijms19030656

Catalog

    Article Metrics

    Article views (219) PDF downloads (28) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return