TONG Zhen, GAO Yanxiang. Research Progress Based on Gliadin Delivery Systems[J]. Science and Technology of Food Industry, 2023, 44(14): 448−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090083.
Citation: TONG Zhen, GAO Yanxiang. Research Progress Based on Gliadin Delivery Systems[J]. Science and Technology of Food Industry, 2023, 44(14): 448−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090083.

Research Progress Based on Gliadin Delivery Systems

More Information
  • Received Date: September 07, 2022
  • Available Online: May 19, 2023
  • Gliadins, as prolamins extracted from wheat, have become potential promising carriers of multitudinous functional components due to their excellent biocompatibility, hydrophobicity, micropolarity, tackiness and ability to modify and enhance the release of functional components. This paper reviews the structure of gliadin, the preparation methods of gliadin-based carriers (antisolvent precipitation methods, pH-cycle methods, solvent evaporation methods, electrospraying methods, non-electrostatic complexation methods) and their applications in the delivery of a wide range of functional components (antioxidants, enzymes, vitamins, antibiotics), further more compares the corresponding advantages and disadvantages of each, in the hope of providing a theoretical basis for the preparation, expansion and development of gliadin delivery systems under different application requirements, as well as the applications of gliadin delivery systems in food, medicine, biological skeleton, etc.
  • [1]
    OLSHEFSKY A, RICHARDSON C, PUN S H. Engineering self-assembling protein nanoparticles for therapeutic delivery[J]. Bioconjugate Chemistry,2022,3(13):13−20.
    [2]
    KARIMI M, MALEKZAD H, MIRSHEKARI H. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems[J]. Critical Reviews in Biotechnology,2018,38(1):47−67. doi: 10.1080/07388551.2017.1312267
    [3]
    DONG F, DONG X, ZHOU L. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake[J]. Colloids and Surfaces B: Biointerfaces,2016,140(6):324−331.
    [4]
    . Food and Agriculture Organization of the United Nations. Crop prospects and food situation [EB/OL]. [2022-03-04]. https://www.fao.org/giews/reports/crop-prospects/en/.
    [5]
    . 郭嘉. 谷朊粉中麦谷蛋白和麦醇溶蛋白的分离及应用研究[D]. 郑州: 河南工业大学, 2011.

    GUO J. Separation and application of glutenin and gliadin from gluten [D]. Zhengzhou: Henan University of Technology, 2011.
    [6]
    . ELZOGHBY A O, ELGOHARY M M. Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs[J]. Advances in Protein Chemistry and Structural Biology, 2015, 98: 169-221
    [7]
    MEHANNA M M, MNEIMNEH A T. Updated but not outdated ''Gliadin'': A plant protein in advanced pharmaceutical nanotechnologies[J]. International Journal of Pharmaceutics,2015,40(7):34−41.
    [8]
    SHEWRY P R, TATHAM A S, FORDE J, et al. The classification and nomenclature of wheat gluten proteins-a reassessment[J]. Journal of Cereal Science,1986,4(2):97−106. doi: 10.1016/S0733-5210(86)80012-1
    [9]
    OKITA T W, CHEESBROUGH V, REEVES C D. Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences[J]. Journal of Biological Chemistry,1985,260(13):8203−8213. doi: 10.1016/S0021-9258(17)39582-0
    [10]
    BYERS M, MIFLIN B J, SMITH S J. A quantitative comparison of the extraction of protein fractions from wheat grain by different solvents, and of the polypeptide and amino acid composition of the alcohol-soluble proteins[J]. Journal of the Science of Food and Agriculture,1983,34(5):447−462. doi: 10.1002/jsfa.2740340506
    [11]
    WIESER H. Relation between gliadin structure and coeliac toxicity[J]. Acta Paediatrica,1996,85:3−9.
    [12]
    THEWISSEN B G, CELUS I, BRIJS K. Foaming properties of wheat gliadin[J]. Journal of Agricultural and Food Chemistry,2011,59(4):1370−1375. doi: 10.1021/jf103473d
    [13]
    VOCI S. Gliadins as versatile biomaterials for drug delivery applications[J]. Journal of Controlled Release,2021,329:385−400. doi: 10.1016/j.jconrel.2020.11.048
    [14]
    . 杨璐. 麦醇溶蛋白对小麦直、支链淀粉回生的影响及相互作用研究[D]. 天津: 天津商业大学, 2021.

    YANG L. Effects of gliadin on the regeneration of amylopectin and amylopectin in wheat [D]. Tianjin: Tianjin University of Commerce, 2021.
    [15]
    FERRANTI P, MAMONE G, PICARIELLO G. Mass spectrometry analysis of gliadins in celiac disease[J]. Journal of Mass Spectrometry,2007,42(12):1531−1548. doi: 10.1002/jms.1361
    [16]
    BLANCH E W, KASARDA D D, HECHT L, NIELSEN K, BARRON L D. New insight into the solution structures of wheat gluten proteins from Raman optical activity[J]. Biochemistry,2003,42:5665−5673. doi: 10.1021/bi027059y
    [17]
    HERBERT W. Chemistry of gluten proteins[J]. Food Microbiology,2007,24:115−119.
    [18]
    MARTÍNEZ-LÓPEZ A L, PANGUA C, REBOREDO C. Protein-based nanoparticles for drug delivery purposes[J]. International Journal of Pharmaceutics,2020,581:278−289.
    [19]
    ORECCHIONI A-M, DUCLAIROIR C, RENARD D. Gliadin characterization by sans and gliadin nanoparticle growth modelization[J]. Journal of Nanoscience and Nanotechnology,2006,6(9):3171−3178. doi: 10.1166/jnn.2006.455
    [20]
    RAMTEKE S, JAIN N K. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori[J]. Journal of Drug Targeting,2018,16(1):65−72.
    [21]
    ZHANG T, XU J, CHEN J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods[J]. Trends in Food Science & Technology,2021,113:26−41.
    [22]
    YANG S, DAI L, SUN C. Characterization of curcumin loaded gliadin-lecithin composite nanoparticles fabricated by antisolvent precipitation in different blending sequences[J]. Food Hydrocolloids,2018,85:185−194. doi: 10.1016/j.foodhyd.2018.07.015
    [23]
    JOYE I J, MCCLEMENTS D J. Production of nanoparticles by anti-solvent precipitation for use in food systems[J]. Trends in Food Science & Technology,2013,34(2):109−123.
    [24]
    SUN C, GAO Y, ZHONG Q. Effects of acidification by glucono-delta-lactone or hydrochloric acid on structures of zein-caseinate nanocomplexes self-assembled during a pH cycle[J]. Food Hydrocolloids,2018,82:173−185. doi: 10.1016/j.foodhyd.2018.04.007
    [25]
    SUN C, GAO Y, ZHONG Q. Properties of ternary biopolymer nanocomplexes of zein, sodium caseinate, and propylene glycol alginate and their functions of stabilizing high internal phase pickering emulsions[J]. Langmuir,2018,34(31):9215−9227. doi: 10.1021/acs.langmuir.8b01887
    [26]
    WEI Y, WANG C, LIU X. Effects of microfluidization and thermal treatment on the characterization and digestion of curcumin loaded protein–polysaccharide–tea saponin complex nanoparticles[J]. Food & Function,2021,12(3):1192−1206.
    [27]
    DAI L, ZHAN X, WEI Y. Composite zein-propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers[J]. Food Hydrocolloids,2018,85:281−290. doi: 10.1016/j.foodhyd.2018.07.013
    [28]
    GULFAM M, KIM J, LEE J M. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells[J]. Langmuir,2012,28(21):8216−8223. doi: 10.1021/la300691n
    [29]
    SEYOUNG H, DONG W C, et al. Protein-based nanoparticles as drug delivery systems[J]. Pharmaceutics,2020,12(3):604−633.
    [30]
    AKMAN P K, BOZKURT F, BALUBAID M. Fabrication of curcumin-loaded gliadin electrospun nanofibrous structures and bioactive properties[J]. Fibers and Polymers,2019,20(6):1187−1199. doi: 10.1007/s12221-019-8950-8
    [31]
    LI R, DAI T, TAN Y. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions[J]. Food Chemistry,2020,310:817−828.
    [32]
    QIN X S, GAO Q Y, LUO Z G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles[J]. Food Hydrocolloids,2021,116:646−658.
    [33]
    URADE R, SATO N, SUGIYAMA M. Gliadins from wheat grain: an overview, from primary structure to nanostructures of aggregates[J]. Biophysical reviews,2018,10(2):435−443. doi: 10.1007/s12551-017-0367-2
    [34]
    刘立群, 喻倩倩, 刘毅, 戴瑞彤. 天然抗氧化剂作用机理及在肉类制品中的应用研究进展[J]. 肉类研究,2017,31(6):45−50. [LIU L Q, YU Q Q, LIU Y, DAI R T. Mechanism of natural antioxidants and their application in meat products[J]. Meat Research,2017,31(6):45−50.

    LIU L Q, YU Q Q, LIU Y, DAI R T. Mechanism of natural antioxidants and their application in meat products [J]. Meat Research, 2017, 31(6): 45-50.
    [35]
    . POMERANZ Y. Relation between chemical composition and bread-making potentialities of wheat flour[J]. Advances in Food Research, 1968: 335–455.
    [36]
    IWAMI K, HATTORI M, IBUKI F. Prominent antioxidant effect of wheat gliadin on linoleate peroxidation in powder model systems at high water activity[J]. Journal of Agricultural and Food Chemistry,1987,35(4):628−631. doi: 10.1021/jf00076a046
    [37]
    SONEKAR S, MISHRA M, PATEL A. Formulation and evaluation of Folic acid conjugated gliadin nanoparticles of curcumin for targeting colon cancer cells[J]. Journal of Applied Pharmaceutical Science,2016,36:068−074.
    [38]
    KELTE FILHO I, MACHADO C S, DIEDRICH C. Optimized chitosan-coated gliadin nanoparticles improved the hesperidin cytotoxicity over tumor cells[J]. Brazilian Archives of Biology and Technology, 2021, 64.
    [39]
    HE J R, ZHU J J, YIN S W. Bioaccessibility and intracellular antioxidant activity of phloretin embodied by gliadin/sodium carboxymethyl cellulose nanoparticles[J]. Food Hydrocolloids,2022,122:67−76.
    [40]
    CHEN S, MA Y, DAI L. Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method[J]. Food Hydrocolloids,2021,118:106−118.
    [41]
    YANG S, LIU L, CHEN H. Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles[J]. Food Hydrocolloids,2021,112(56):251−258.
    [42]
    CHEN X, CHEN Y, HUANG Y. Hybrid Bionanoparticle-stabilized pickering emulsions for quercetin delivery: effect of interfacial composition on release, lipolysis, and bioaccessibility[J]. ACS Applied Nano Materials,2019,2(10):6462−6472. doi: 10.1021/acsanm.9b01413
    [43]
    WANG Q, TANG Y, YANG Y. Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229(45):129−137.
    [44]
    YANG Y Y, ZHANG M, LIU Z P. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying[J]. Applied Surface Science,2018,434:1040−1047. doi: 10.1016/j.apsusc.2017.11.024
    [45]
    LI C, WANG Q, ZHANG C. Effect of simultaneous treatment combining ultrasonication and rutin on gliadin in the formation of nanoparticles[J]. Journal of Food Science,2021,87(1):80−93.
    [46]
    . WANG X G. Assessing the cytotoxicity of newly developed gliadin nanoparticles loading polymethoxy flavones[D]. Rutgers, The State University of New Jersey, 2016.
    [47]
    刘亚男, 郝柏妹, 许为东. 负载山奈酚的小麦醇溶蛋白纳米颗粒的制备及其抗氧化活性研究[J]. 中国粮油学报,2021,36(12):44−49. [LIU Y N, HAO B S, XU W D. Preparation and antioxidant activity of wheat gliadin nanoparticles loaded with kaempferol[J]. Chinese Journal of Cereals and Oils,2021,36(12):44−49. doi: 10.3969/j.issn.1003-0174.2021.12.008

    LIU Y N, HAO B S, XU W D. Preparation and antioxidant activity of wheat gliadin nanoparticles loaded with kaempferol [J]. Chinese Journal of Cereals and Oils, 2021, 36(12): 44-49. doi: 10.3969/j.issn.1003-0174.2021.12.008
    [48]
    WU W, KONG X, ZHANG C. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride[J]. LWT,2020,129(32):522−532.
    [49]
    LIU C, LI M, YANG J. Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin[J]. Food Hydrocolloids,2017,73:74−89. doi: 10.1016/j.foodhyd.2017.06.036
    [50]
    ZHU X, CHEN Y, HU Y. Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties[J]. Food Hydrocolloids,2021,111(6):166−179.
    [51]
    . WANG L, WEI Z, XUE C Fucoxanthin-loaded nanoparticles composed of gliadin and chondroitin sulfate: Synthesis, characterization and stability[J]. Food Chemistry, 2022, 379: 152–163.
    [52]
    CHENG C, GAO Y, WU Z. Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility[J]. Molecules,2020,25(18):4188. doi: 10.3390/molecules25184188
    [53]
    MA L, ZOU L, MCCLEMENTS D J. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic[J]. Food Hydrocolloids,2020,100(7):370−381.
    [54]
    PANIGRAHI S S, SYED I, SIVABALAN S. Nanoencapsulation strategies for lipid-soluble vitamins[J]. Chemical Papers,2018,73(1):1−16.
    [55]
    DUCLAIROIR C, ORECCHIONI A M, DEPRAETERE P. α-Tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles[J]. Journal of Microencapsulation,2002,19(1):53−60. doi: 10.1080/02652040110055207
    [56]
    DUCLAIROIR C, IRACHE J M, NAKACHE E. Gliadin nanoparticles: formation, all-trans-retinoic acid entrapment and release, size optimization[J]. Polymer International,1999,48(4):327−333. doi: 10.1002/(SICI)1097-0126(199904)48:4<327::AID-PI165>3.0.CO;2-Y
    [57]
    CARILLON J, ROUANET J M, CRISTOL J P. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action[J]. Pharmaceutical Research,2013,30(11):2718−2728. doi: 10.1007/s11095-013-1113-5
    [58]
    KICK J, HAUSER B, BRACHT H. Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping[J]. Intensive Care Medicine,2007,33(4):694−702. doi: 10.1007/s00134-006-0518-6
    [59]
    VOULDOUKIS I, CONTI M, KRAUSS P. Supplementation with gliadin-combined plant superoxide dismutase extract promotes antioxidant defences and protects against oxidative stress[J]. Phytotherapy Research,2004,18(12):957−962. doi: 10.1002/ptr.1542
    [60]
    OUALI K, BABA-AHMED F, GUEDRI K. Protective role of a melon superoxide dismutase combined with gliadin (GliSODin) on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis[J]. Journal of Cancer Research and Therapeutics,2021,17(6):1445−1453. doi: 10.4103/jcrt.JCRT_175_19
    [61]
    KOIKE M, NAGAO M, IWASE Y. Clinical Efficacy of Melon GliSODin® for the treatment of aging-related dysfunction in motor organs-a double blind, randomized placebo-controlled study[J]. Journal of Clinical Medicine,2022,11(10):2747. doi: 10.3390/jcm11102747
    [62]
    张新帅, 阮瑶, 刘武康. 致病菌抵抗溶菌酶机制的研究进展[J]. 食品科学,2020,41(17):298−306. [ZHANG X S, RUAN Y, LIU W K. Research progress of resistance mechanism of pathogenic bacteria to lysozyme[J]. Food Science,2020,41(17):298−306. doi: 10.7506/spkx1002-6630-20190809-100

    ZHANG X S, RUAN Y, LIU W K. Research progress of resistance mechanism of pathogenic bacteria to lysozyme [J]. Food Science, 2020, 41(17): 298-306. doi: 10.7506/spkx1002-6630-20190809-100
    [63]
    FAJARDO P, BALAGUER M P, GOMEZ-ESTACA J. Chemically modified gliadins as sustained release systems for lysozyme[J]. Food Hydrocolloids,2014,41:53−59. doi: 10.1016/j.foodhyd.2014.03.019
    [64]
    LIU X, SHAO W, LUO M. Electrospun blank nanocoating for improved sustained release profiles from medicated gliadin nanofibers[J]. Nanomaterials,2018,8(4):184. doi: 10.3390/nano8040184
    [65]
    RAMTEKE S, GANESH N, BHATTACHARYA S. Triple therapy-based targeted nanoparticles for the treatment ofHelicobacter pylori[J]. Journal of Drug Targeting,2008,16(9):694−705. doi: 10.1080/10611860802295839
    [66]
    SHARMA K, DEEVENAPALLI M, SINGH D. Preparation and characterization of paclitaxel-loaded gliadin nanoparticles[J]. Journal of Biomaterials and Tissue Engineering,2014,4(5):399−404. doi: 10.1166/jbt.2014.1182
    [67]
    WU X, HU Q, LIANG X. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: Molecular interactions and antifungal application on cherry tomato[J]. Food Chemistry,2022,391:277−288.
    [68]
    陈方圆. 麦醇溶蛋白基递送体系对天然抗菌剂的稳态化输送及特性研究[D]. 杭州: 浙江科技学院, 2022.

    CHEN F Y. Study on stable transportation and characteristics of natural antibacterial agents by wheat gliadin based delivery system[D]. Hangzhou: Zhejiang University of Science and Technology, 2022.
    [69]
    SAFAROV T, KIRAN B, BAGIROVA M. An overview of nanotechnology-based treatment approaches against Helicobacter Pylori[J]. Expert Review of Anti-infective Therapy,2019,17(10):829−840. doi: 10.1080/14787210.2019.1677464
    [70]
    UMAMAHESHWARI R B, RAMTEKE S, JAIN N K. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model[J]. AAPS PharmSciTech,2004,5(2):60−68. doi: 10.1208/pt050232
    [71]
    YANG Y, LI W, YU D G. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning[J]. Carbohydrate Polymers,2019,203:228−237. doi: 10.1016/j.carbpol.2018.09.061
    [72]
    范文涛, 陶雨文, 范志宁. 麦醇溶蛋白-雷帕霉素复合纳米颗粒治疗乳糜泻的探索研究[J]. 中国临床研究,2022,35(5):593−598, 605. [FAN W T, TAO Y W, FAN Z N. Study on the treatment of chylous diarrhea with gliadin rapamycin composite nanoparticles[J]. China Clinical Research,2022,35(5):593−598, 605.

    FAN W T, TAO Y W, FAN Z N. Study on the treatment of chylous diarrhea with gliadin rapamycin composite nanoparticles [J]. China Clinical Research, 2022, 35 (5): 593-598, 605.
  • Related Articles

    [1]LIU Changnian, GUO Yan, ZHANG Jiaxin, YU Xiuzhu, LI Qi. Research Progress of Protein/Lipid-Starch Interactions and Their Effect in Slowing Down Starch Digestion Rate[J]. Science and Technology of Food Industry, 2025, 46(9): 1-10. DOI: 10.13386/j.issn1002-0306.2024070226
    [2]ZHANG Yun, ZHANG Kangyi, ZHAO Di, GUO Dongxu, ZHANG Guozhi. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97-106. DOI: 10.13386/j.issn1002-0306.2022010171
    [3]YUAN Lu, HU Jie-lun, YIN Jun-yi. Progress on the Effect of Microwave Irradiation on Structural Characteristics of Starch and Its Application in Starch Derived Food Processing[J]. Science and Technology of Food Industry, 2020, 41(18): 330-337,343. DOI: 10.13386/j.issn1002-0306.2020.18.052
    [4]MIAO Lan-ge, XU Yan, ZHAO Si-ming, JIA Cai-hua, NIU Meng, LIN Qin-lu. Effects of Anthocyanin on Physicochemical Properties of Starches with Different Amylose Contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28. DOI: 10.13386/j.issn1002-0306.2020.14.004
    [5]CAO Ying, XIA Wen, WANG Fei, LI Ji-hua, LIN Yan-yun. Research Progress on the Effect of Physical Modification on Starch Properties[J]. Science and Technology of Food Industry, 2019, 40(21): 315-319,325. DOI: 10.13386/j.issn1002-0306.2019.21.051
    [6]ZHANG Yu, ZHANG Kang-yi, ZHANG Guo-zhi. Research Progress on Starch Retrogradation Process Mechanism and Application of Starch Anti-retrogradation Agent[J]. Science and Technology of Food Industry, 2019, 40(13): 316-321. DOI: 10.13386/j.issn1002-0306.2019.13.053
    [7]WEI Ping, YOU Xiang-rong, ZHANG Ya-yuan, SUN Jian, HUANG Cheng-zu, LI Ming-juan, WANG Ying, ZHOU Kui, XIE Xiao-qiang. Influences of Adding Starch on Potato Rice Noodle Quality[J]. Science and Technology of Food Industry, 2019, 40(11): 79-84. DOI: 10.13386/j.issn1002-0306.2019.11.014
    [8]HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065
    [9]LI Xue-hong, CHEN Zhi-jing, LU Yong, NIE Yu-hong. Research on the factors and characterization methods of starch digestibility[J]. Science and Technology of Food Industry, 2015, (22): 376-378. DOI: 10.13386/j.issn1002-0306.2015.22.069
    [10]WU Li- jing, CHE Li- ming, CHEN Xiao-dong. Effect of tea polyphenols on the retrogradation of sweet potato starch[J]. Science and Technology of Food Industry, 2014, (21): 123-127. DOI: 10.13386/j.issn1002-0306.2014.21.018

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return