Citation: | TONG Zhen, GAO Yanxiang. Research Progress Based on Gliadin Delivery Systems[J]. Science and Technology of Food Industry, 2023, 44(14): 448−456. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090083. |
[1] |
OLSHEFSKY A, RICHARDSON C, PUN S H. Engineering self-assembling protein nanoparticles for therapeutic delivery[J]. Bioconjugate Chemistry,2022,3(13):13−20.
|
[2] |
KARIMI M, MALEKZAD H, MIRSHEKARI H. Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems[J]. Critical Reviews in Biotechnology,2018,38(1):47−67. doi: 10.1080/07388551.2017.1312267
|
[3] |
DONG F, DONG X, ZHOU L. Doxorubicin-loaded biodegradable self-assembly zein nanoparticle and its anti-cancer effect: Preparation, in vitro evaluation, and cellular uptake[J]. Colloids and Surfaces B: Biointerfaces,2016,140(6):324−331.
|
[4] |
. Food and Agriculture Organization of the United Nations. Crop prospects and food situation [EB/OL]. [2022-03-04]. https://www.fao.org/giews/reports/crop-prospects/en/.
|
[5] |
. 郭嘉. 谷朊粉中麦谷蛋白和麦醇溶蛋白的分离及应用研究[D]. 郑州: 河南工业大学, 2011.
GUO J. Separation and application of glutenin and gliadin from gluten [D]. Zhengzhou: Henan University of Technology, 2011.
|
[6] |
. ELZOGHBY A O, ELGOHARY M M. Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs[J]. Advances in Protein Chemistry and Structural Biology, 2015, 98: 169-221
|
[7] |
MEHANNA M M, MNEIMNEH A T. Updated but not outdated ''Gliadin'': A plant protein in advanced pharmaceutical nanotechnologies[J]. International Journal of Pharmaceutics,2015,40(7):34−41.
|
[8] |
SHEWRY P R, TATHAM A S, FORDE J, et al. The classification and nomenclature of wheat gluten proteins-a reassessment[J]. Journal of Cereal Science,1986,4(2):97−106. doi: 10.1016/S0733-5210(86)80012-1
|
[9] |
OKITA T W, CHEESBROUGH V, REEVES C D. Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences[J]. Journal of Biological Chemistry,1985,260(13):8203−8213. doi: 10.1016/S0021-9258(17)39582-0
|
[10] |
BYERS M, MIFLIN B J, SMITH S J. A quantitative comparison of the extraction of protein fractions from wheat grain by different solvents, and of the polypeptide and amino acid composition of the alcohol-soluble proteins[J]. Journal of the Science of Food and Agriculture,1983,34(5):447−462. doi: 10.1002/jsfa.2740340506
|
[11] |
WIESER H. Relation between gliadin structure and coeliac toxicity[J]. Acta Paediatrica,1996,85:3−9.
|
[12] |
THEWISSEN B G, CELUS I, BRIJS K. Foaming properties of wheat gliadin[J]. Journal of Agricultural and Food Chemistry,2011,59(4):1370−1375. doi: 10.1021/jf103473d
|
[13] |
VOCI S. Gliadins as versatile biomaterials for drug delivery applications[J]. Journal of Controlled Release,2021,329:385−400. doi: 10.1016/j.jconrel.2020.11.048
|
[14] |
. 杨璐. 麦醇溶蛋白对小麦直、支链淀粉回生的影响及相互作用研究[D]. 天津: 天津商业大学, 2021.
YANG L. Effects of gliadin on the regeneration of amylopectin and amylopectin in wheat [D]. Tianjin: Tianjin University of Commerce, 2021.
|
[15] |
FERRANTI P, MAMONE G, PICARIELLO G. Mass spectrometry analysis of gliadins in celiac disease[J]. Journal of Mass Spectrometry,2007,42(12):1531−1548. doi: 10.1002/jms.1361
|
[16] |
BLANCH E W, KASARDA D D, HECHT L, NIELSEN K, BARRON L D. New insight into the solution structures of wheat gluten proteins from Raman optical activity[J]. Biochemistry,2003,42:5665−5673. doi: 10.1021/bi027059y
|
[17] |
HERBERT W. Chemistry of gluten proteins[J]. Food Microbiology,2007,24:115−119.
|
[18] |
MARTÍNEZ-LÓPEZ A L, PANGUA C, REBOREDO C. Protein-based nanoparticles for drug delivery purposes[J]. International Journal of Pharmaceutics,2020,581:278−289.
|
[19] |
ORECCHIONI A-M, DUCLAIROIR C, RENARD D. Gliadin characterization by sans and gliadin nanoparticle growth modelization[J]. Journal of Nanoscience and Nanotechnology,2006,6(9):3171−3178. doi: 10.1166/jnn.2006.455
|
[20] |
RAMTEKE S, JAIN N K. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori[J]. Journal of Drug Targeting,2018,16(1):65−72.
|
[21] |
ZHANG T, XU J, CHEN J. Protein nanoparticles for Pickering emulsions: A comprehensive review on their shapes, preparation methods, and modification methods[J]. Trends in Food Science & Technology,2021,113:26−41.
|
[22] |
YANG S, DAI L, SUN C. Characterization of curcumin loaded gliadin-lecithin composite nanoparticles fabricated by antisolvent precipitation in different blending sequences[J]. Food Hydrocolloids,2018,85:185−194. doi: 10.1016/j.foodhyd.2018.07.015
|
[23] |
JOYE I J, MCCLEMENTS D J. Production of nanoparticles by anti-solvent precipitation for use in food systems[J]. Trends in Food Science & Technology,2013,34(2):109−123.
|
[24] |
SUN C, GAO Y, ZHONG Q. Effects of acidification by glucono-delta-lactone or hydrochloric acid on structures of zein-caseinate nanocomplexes self-assembled during a pH cycle[J]. Food Hydrocolloids,2018,82:173−185. doi: 10.1016/j.foodhyd.2018.04.007
|
[25] |
SUN C, GAO Y, ZHONG Q. Properties of ternary biopolymer nanocomplexes of zein, sodium caseinate, and propylene glycol alginate and their functions of stabilizing high internal phase pickering emulsions[J]. Langmuir,2018,34(31):9215−9227. doi: 10.1021/acs.langmuir.8b01887
|
[26] |
WEI Y, WANG C, LIU X. Effects of microfluidization and thermal treatment on the characterization and digestion of curcumin loaded protein–polysaccharide–tea saponin complex nanoparticles[J]. Food & Function,2021,12(3):1192−1206.
|
[27] |
DAI L, ZHAN X, WEI Y. Composite zein-propylene glycol alginate particles prepared using solvent evaporation: Characterization and application as Pickering emulsion stabilizers[J]. Food Hydrocolloids,2018,85:281−290. doi: 10.1016/j.foodhyd.2018.07.013
|
[28] |
GULFAM M, KIM J, LEE J M. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells[J]. Langmuir,2012,28(21):8216−8223. doi: 10.1021/la300691n
|
[29] |
SEYOUNG H, DONG W C, et al. Protein-based nanoparticles as drug delivery systems[J]. Pharmaceutics,2020,12(3):604−633.
|
[30] |
AKMAN P K, BOZKURT F, BALUBAID M. Fabrication of curcumin-loaded gliadin electrospun nanofibrous structures and bioactive properties[J]. Fibers and Polymers,2019,20(6):1187−1199. doi: 10.1007/s12221-019-8950-8
|
[31] |
LI R, DAI T, TAN Y. Fabrication of pea protein-tannic acid complexes: Impact on formation, stability, and digestion of flaxseed oil emulsions[J]. Food Chemistry,2020,310:817−828.
|
[32] |
QIN X S, GAO Q Y, LUO Z G. Enhancing the storage and gastrointestinal passage viability of probiotic powder (Lactobacillus plantarum) through encapsulation with pickering high internal phase emulsions stabilized with WPI-EGCG covalent conjugate nanoparticles[J]. Food Hydrocolloids,2021,116:646−658.
|
[33] |
URADE R, SATO N, SUGIYAMA M. Gliadins from wheat grain: an overview, from primary structure to nanostructures of aggregates[J]. Biophysical reviews,2018,10(2):435−443. doi: 10.1007/s12551-017-0367-2
|
[34] |
刘立群, 喻倩倩, 刘毅, 戴瑞彤. 天然抗氧化剂作用机理及在肉类制品中的应用研究进展[J]. 肉类研究,2017,31(6):45−50. [LIU L Q, YU Q Q, LIU Y, DAI R T. Mechanism of natural antioxidants and their application in meat products[J]. Meat Research,2017,31(6):45−50.
LIU L Q, YU Q Q, LIU Y, DAI R T. Mechanism of natural antioxidants and their application in meat products [J]. Meat Research, 2017, 31(6): 45-50.
|
[35] |
. POMERANZ Y. Relation between chemical composition and bread-making potentialities of wheat flour[J]. Advances in Food Research, 1968: 335–455.
|
[36] |
IWAMI K, HATTORI M, IBUKI F. Prominent antioxidant effect of wheat gliadin on linoleate peroxidation in powder model systems at high water activity[J]. Journal of Agricultural and Food Chemistry,1987,35(4):628−631. doi: 10.1021/jf00076a046
|
[37] |
SONEKAR S, MISHRA M, PATEL A. Formulation and evaluation of Folic acid conjugated gliadin nanoparticles of curcumin for targeting colon cancer cells[J]. Journal of Applied Pharmaceutical Science,2016,36:068−074.
|
[38] |
KELTE FILHO I, MACHADO C S, DIEDRICH C. Optimized chitosan-coated gliadin nanoparticles improved the hesperidin cytotoxicity over tumor cells[J]. Brazilian Archives of Biology and Technology, 2021, 64.
|
[39] |
HE J R, ZHU J J, YIN S W. Bioaccessibility and intracellular antioxidant activity of phloretin embodied by gliadin/sodium carboxymethyl cellulose nanoparticles[J]. Food Hydrocolloids,2022,122:67−76.
|
[40] |
CHEN S, MA Y, DAI L. Fabrication, characterization, stability and re-dispersibility of curcumin-loaded gliadin-rhamnolipid composite nanoparticles using pH-driven method[J]. Food Hydrocolloids,2021,118:106−118.
|
[41] |
YANG S, LIU L, CHEN H. Impact of different crosslinking agents on functional properties of curcumin-loaded gliadin-chitosan composite nanoparticles[J]. Food Hydrocolloids,2021,112(56):251−258.
|
[42] |
CHEN X, CHEN Y, HUANG Y. Hybrid Bionanoparticle-stabilized pickering emulsions for quercetin delivery: effect of interfacial composition on release, lipolysis, and bioaccessibility[J]. ACS Applied Nano Materials,2019,2(10):6462−6472. doi: 10.1021/acsanm.9b01413
|
[43] |
WANG Q, TANG Y, YANG Y. Interaction between wheat gliadin and quercetin under different pH conditions analyzed by multi-spectroscopy methods[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,229(45):129−137.
|
[44] |
YANG Y Y, ZHANG M, LIU Z P. Meletin sustained-release gliadin nanoparticles prepared via solvent surface modification on blending electrospraying[J]. Applied Surface Science,2018,434:1040−1047. doi: 10.1016/j.apsusc.2017.11.024
|
[45] |
LI C, WANG Q, ZHANG C. Effect of simultaneous treatment combining ultrasonication and rutin on gliadin in the formation of nanoparticles[J]. Journal of Food Science,2021,87(1):80−93.
|
[46] |
. WANG X G. Assessing the cytotoxicity of newly developed gliadin nanoparticles loading polymethoxy flavones[D]. Rutgers, The State University of New Jersey, 2016.
|
[47] |
刘亚男, 郝柏妹, 许为东. 负载山奈酚的小麦醇溶蛋白纳米颗粒的制备及其抗氧化活性研究[J]. 中国粮油学报,2021,36(12):44−49. [LIU Y N, HAO B S, XU W D. Preparation and antioxidant activity of wheat gliadin nanoparticles loaded with kaempferol[J]. Chinese Journal of Cereals and Oils,2021,36(12):44−49. doi: 10.3969/j.issn.1003-0174.2021.12.008
LIU Y N, HAO B S, XU W D. Preparation and antioxidant activity of wheat gliadin nanoparticles loaded with kaempferol [J]. Chinese Journal of Cereals and Oils, 2021, 36(12): 44-49. doi: 10.3969/j.issn.1003-0174.2021.12.008
|
[48] |
WU W, KONG X, ZHANG C. Fabrication and characterization of resveratrol-loaded gliadin nanoparticles stabilized by gum Arabic and chitosan hydrochloride[J]. LWT,2020,129(32):522−532.
|
[49] |
LIU C, LI M, YANG J. Fabrication and characterization of biocompatible hybrid nanoparticles from spontaneous co-assembly of casein/gliadin and proanthocyanidin[J]. Food Hydrocolloids,2017,73:74−89. doi: 10.1016/j.foodhyd.2017.06.036
|
[50] |
ZHU X, CHEN Y, HU Y. Tuning the molecular interactions between gliadin and tannic acid to prepare Pickering stabilizers with improved emulsifying properties[J]. Food Hydrocolloids,2021,111(6):166−179.
|
[51] |
. WANG L, WEI Z, XUE C Fucoxanthin-loaded nanoparticles composed of gliadin and chondroitin sulfate: Synthesis, characterization and stability[J]. Food Chemistry, 2022, 379: 152–163.
|
[52] |
CHENG C, GAO Y, WU Z. Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility[J]. Molecules,2020,25(18):4188. doi: 10.3390/molecules25184188
|
[53] |
MA L, ZOU L, MCCLEMENTS D J. One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic[J]. Food Hydrocolloids,2020,100(7):370−381.
|
[54] |
PANIGRAHI S S, SYED I, SIVABALAN S. Nanoencapsulation strategies for lipid-soluble vitamins[J]. Chemical Papers,2018,73(1):1−16.
|
[55] |
DUCLAIROIR C, ORECCHIONI A M, DEPRAETERE P. α-Tocopherol encapsulation and in vitro release from wheat gliadin nanoparticles[J]. Journal of Microencapsulation,2002,19(1):53−60. doi: 10.1080/02652040110055207
|
[56] |
DUCLAIROIR C, IRACHE J M, NAKACHE E. Gliadin nanoparticles: formation, all-trans-retinoic acid entrapment and release, size optimization[J]. Polymer International,1999,48(4):327−333. doi: 10.1002/(SICI)1097-0126(199904)48:4<327::AID-PI165>3.0.CO;2-Y
|
[57] |
CARILLON J, ROUANET J M, CRISTOL J P. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action[J]. Pharmaceutical Research,2013,30(11):2718−2728. doi: 10.1007/s11095-013-1113-5
|
[58] |
KICK J, HAUSER B, BRACHT H. Effects of a cantaloupe melon extract/wheat gliadin biopolymer during aortic cross-clamping[J]. Intensive Care Medicine,2007,33(4):694−702. doi: 10.1007/s00134-006-0518-6
|
[59] |
VOULDOUKIS I, CONTI M, KRAUSS P. Supplementation with gliadin-combined plant superoxide dismutase extract promotes antioxidant defences and protects against oxidative stress[J]. Phytotherapy Research,2004,18(12):957−962. doi: 10.1002/ptr.1542
|
[60] |
OUALI K, BABA-AHMED F, GUEDRI K. Protective role of a melon superoxide dismutase combined with gliadin (GliSODin) on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis[J]. Journal of Cancer Research and Therapeutics,2021,17(6):1445−1453. doi: 10.4103/jcrt.JCRT_175_19
|
[61] |
KOIKE M, NAGAO M, IWASE Y. Clinical Efficacy of Melon GliSODin® for the treatment of aging-related dysfunction in motor organs-a double blind, randomized placebo-controlled study[J]. Journal of Clinical Medicine,2022,11(10):2747. doi: 10.3390/jcm11102747
|
[62] |
张新帅, 阮瑶, 刘武康. 致病菌抵抗溶菌酶机制的研究进展[J]. 食品科学,2020,41(17):298−306. [ZHANG X S, RUAN Y, LIU W K. Research progress of resistance mechanism of pathogenic bacteria to lysozyme[J]. Food Science,2020,41(17):298−306. doi: 10.7506/spkx1002-6630-20190809-100
ZHANG X S, RUAN Y, LIU W K. Research progress of resistance mechanism of pathogenic bacteria to lysozyme [J]. Food Science, 2020, 41(17): 298-306. doi: 10.7506/spkx1002-6630-20190809-100
|
[63] |
FAJARDO P, BALAGUER M P, GOMEZ-ESTACA J. Chemically modified gliadins as sustained release systems for lysozyme[J]. Food Hydrocolloids,2014,41:53−59. doi: 10.1016/j.foodhyd.2014.03.019
|
[64] |
LIU X, SHAO W, LUO M. Electrospun blank nanocoating for improved sustained release profiles from medicated gliadin nanofibers[J]. Nanomaterials,2018,8(4):184. doi: 10.3390/nano8040184
|
[65] |
RAMTEKE S, GANESH N, BHATTACHARYA S. Triple therapy-based targeted nanoparticles for the treatment ofHelicobacter pylori[J]. Journal of Drug Targeting,2008,16(9):694−705. doi: 10.1080/10611860802295839
|
[66] |
SHARMA K, DEEVENAPALLI M, SINGH D. Preparation and characterization of paclitaxel-loaded gliadin nanoparticles[J]. Journal of Biomaterials and Tissue Engineering,2014,4(5):399−404. doi: 10.1166/jbt.2014.1182
|
[67] |
WU X, HU Q, LIANG X. Fabrication of colloidal stable gliadin-casein nanoparticles for the encapsulation of natamycin: Molecular interactions and antifungal application on cherry tomato[J]. Food Chemistry,2022,391:277−288.
|
[68] |
陈方圆. 麦醇溶蛋白基递送体系对天然抗菌剂的稳态化输送及特性研究[D]. 杭州: 浙江科技学院, 2022.
CHEN F Y. Study on stable transportation and characteristics of natural antibacterial agents by wheat gliadin based delivery system[D]. Hangzhou: Zhejiang University of Science and Technology, 2022.
|
[69] |
SAFAROV T, KIRAN B, BAGIROVA M. An overview of nanotechnology-based treatment approaches against Helicobacter Pylori[J]. Expert Review of Anti-infective Therapy,2019,17(10):829−840. doi: 10.1080/14787210.2019.1677464
|
[70] |
UMAMAHESHWARI R B, RAMTEKE S, JAIN N K. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model[J]. AAPS PharmSciTech,2004,5(2):60−68. doi: 10.1208/pt050232
|
[71] |
YANG Y, LI W, YU D G. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning[J]. Carbohydrate Polymers,2019,203:228−237. doi: 10.1016/j.carbpol.2018.09.061
|
[72] |
范文涛, 陶雨文, 范志宁. 麦醇溶蛋白-雷帕霉素复合纳米颗粒治疗乳糜泻的探索研究[J]. 中国临床研究,2022,35(5):593−598, 605. [FAN W T, TAO Y W, FAN Z N. Study on the treatment of chylous diarrhea with gliadin rapamycin composite nanoparticles[J]. China Clinical Research,2022,35(5):593−598, 605.
FAN W T, TAO Y W, FAN Z N. Study on the treatment of chylous diarrhea with gliadin rapamycin composite nanoparticles [J]. China Clinical Research, 2022, 35 (5): 593-598, 605.
|
[1] | LIU Changnian, GUO Yan, ZHANG Jiaxin, YU Xiuzhu, LI Qi. Research Progress of Protein/Lipid-Starch Interactions and Their Effect in Slowing Down Starch Digestion Rate[J]. Science and Technology of Food Industry, 2025, 46(9): 1-10. DOI: 10.13386/j.issn1002-0306.2024070226 |
[2] | ZHANG Yun, ZHANG Kangyi, ZHAO Di, GUO Dongxu, ZHANG Guozhi. Structure and in Vitro Digestion Properties of Waxy Wheat Starch-Lipid Complexes[J]. Science and Technology of Food Industry, 2022, 43(20): 97-106. DOI: 10.13386/j.issn1002-0306.2022010171 |
[3] | YUAN Lu, HU Jie-lun, YIN Jun-yi. Progress on the Effect of Microwave Irradiation on Structural Characteristics of Starch and Its Application in Starch Derived Food Processing[J]. Science and Technology of Food Industry, 2020, 41(18): 330-337,343. DOI: 10.13386/j.issn1002-0306.2020.18.052 |
[4] | MIAO Lan-ge, XU Yan, ZHAO Si-ming, JIA Cai-hua, NIU Meng, LIN Qin-lu. Effects of Anthocyanin on Physicochemical Properties of Starches with Different Amylose Contents[J]. Science and Technology of Food Industry, 2020, 41(14): 22-28. DOI: 10.13386/j.issn1002-0306.2020.14.004 |
[5] | CAO Ying, XIA Wen, WANG Fei, LI Ji-hua, LIN Yan-yun. Research Progress on the Effect of Physical Modification on Starch Properties[J]. Science and Technology of Food Industry, 2019, 40(21): 315-319,325. DOI: 10.13386/j.issn1002-0306.2019.21.051 |
[6] | ZHANG Yu, ZHANG Kang-yi, ZHANG Guo-zhi. Research Progress on Starch Retrogradation Process Mechanism and Application of Starch Anti-retrogradation Agent[J]. Science and Technology of Food Industry, 2019, 40(13): 316-321. DOI: 10.13386/j.issn1002-0306.2019.13.053 |
[7] | WEI Ping, YOU Xiang-rong, ZHANG Ya-yuan, SUN Jian, HUANG Cheng-zu, LI Ming-juan, WANG Ying, ZHOU Kui, XIE Xiao-qiang. Influences of Adding Starch on Potato Rice Noodle Quality[J]. Science and Technology of Food Industry, 2019, 40(11): 79-84. DOI: 10.13386/j.issn1002-0306.2019.11.014 |
[8] | HUANG Jun- rong, LI Yan-fang, PU Hua-yin, LI Hong-liang. Research progress on application of texture analyzer in quality of starch and starch- based food[J]. Science and Technology of Food Industry, 2017, (04): 390-395. DOI: 10.13386/j.issn1002-0306.2017.04.065 |
[9] | LI Xue-hong, CHEN Zhi-jing, LU Yong, NIE Yu-hong. Research on the factors and characterization methods of starch digestibility[J]. Science and Technology of Food Industry, 2015, (22): 376-378. DOI: 10.13386/j.issn1002-0306.2015.22.069 |
[10] | WU Li- jing, CHE Li- ming, CHEN Xiao-dong. Effect of tea polyphenols on the retrogradation of sweet potato starch[J]. Science and Technology of Food Industry, 2014, (21): 123-127. DOI: 10.13386/j.issn1002-0306.2014.21.018 |