Citation: | XIE Jiaqi, ZHAO Jie. Interaction Mechanism of Lactic Acid Bacteria in Fermented Milk and Its Effect on Product Characteristics[J]. Science and Technology of Food Industry, 2023, 44(17): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090021. |
[1] |
中华人民共和国卫生部. GB 19302-2010食品安全国家标准发酵乳[S]. 北京: 中国标准出版社, 2010.
Ministry of Health of the People's Republic of China. GB 19302-2010 Food safety national standard fermented milk[S]. Beijing: China Standards Press, 2010.
|
[2] |
GARCÍA-BURGOS M, MORENO-FERNÁNDEZ J, ALFÉREZ M J M, et al. New perspectives in fermented dairy products and their health relevance[J]. Journal of Functional Foods,2020,72:104059. doi: 10.1016/j.jff.2020.104059
|
[3] |
SHARMA H, OZOGUL F, BARKIENE E, et al. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products[J]. Critical Reviews in Food Science and Nutrition,2021,30:1−23.
|
[4] |
TARRAH A, VINÍCIUS, DE CASTILHOS J, et al. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces[J]. Journal of Functional Foods,2019,54:489−497. doi: 10.1016/j.jff.2019.02.004
|
[5] |
左梦楠, 刘伟, 全琦, 等. 乳酸菌高密度培养技术的研究进展[J]. 食品工业科技,2022,43(19):436, 445−445. [ZUO M N, LIU W, QUAN Q, et al. Research progress of high density culture of lactic acid bacteria[J]. Food Industry Science and Technology,2022,43(19):436, 445−445.
ZUO M N, LIU W, QUAN Q, et al. Research progress of high density culture of lactic acid bacteria[J]. Food Industry Science and Technology, 2022, 43(19): 436, 445.
|
[6] |
CUCICK A, GIANNI K, TODOROV S D, et al. Evaluation of the bioavailability and intestinal effects of milk fermented by folate producing lactic acid bacteria in a depletion/repletion mice model[J]. Journal of Functional Foods,2020,66:103−785.
|
[7] |
李权威, 张开屏, 赵艳红, 等. 乳酸菌调控胆固醇代谢关键因子的研究进展[J]. 中国食品学报,2021,21(1):341−350. [LI Q W, ZHANG K P, ZHAO Y H, et al. Research progress on key factors of cholesterol metabolism regulated by lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):341−350.
LI Q W, ZHANG K Z, ZHAO Y H, et al. Research progress on key factors of cholesterol metabolism regulated by lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 341-350.
|
[8] |
王淑梅, 邸维, 妥彦峰, 等. 益生菌的免疫调控作用研究进展[J]. 粮食与油脂,2021,34(5):23−26. [WANG S M, DI W, TUO Y F, et al. Research progress on immune regulation of probiotics[J]. Cereals & Oils,2021,34(5):23−26.
WANG S M, DI W, TUO Y F, et al. Research progress on immune regulation of probiotics[J]. Cereals & Oils, 2021, 34(5): 23-26.
|
[9] |
YONEZAWA S, XIAO J Z, ODAMAKI T, et al. Improved growth of Bifidobacteria by cocultivation with Lactococcuslactis subspecies lactis[J]. Journal of Dairy Science,2010,93(5):1815−1823. doi: 10.3168/jds.2009-2708
|
[10] |
赵春雨, 曲晓军, 崔艳华, 等. 德氏乳杆菌保加利亚亚种和嗜热链球菌的共生机制研究进展[J]. 乳业科学与技术,2015,38(4):21−24. [ZHAO C Y, QU X J, CUI Y H, et al. Research progress on symbiotic mechanism of Lactobacillus bulgaricus and Streptococcus thermophiles[J]. Journal of Dairy Science and Technology,2015,38(4):21−24.
ZHAO C Y, QU X J, CUI Y H, et al. Research progress on symbiotic mechanism of Lactobacillus bulgaricus and Streptococcus thermophiles[J]. Journal of Dairy Science and Technology, 2015, 38(4): 21-24.
|
[11] |
KURT S, JOAKIM M A, RODOLPHE B. Short communication: Transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus[J]. Journal of Dairy Science,2019,102(9):7800−7806. doi: 10.3168/jds.2019-16397
|
[12] |
YAMAUCHI R, MAGUIN E, HORIUCHI H et al. The critical role of urease in yogurt fermentation with various combinations of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus[J]. Journal of Dairy Science,2019,102(2):1033−1043. doi: 10.3168/jds.2018-15192
|
[13] |
LIU E, ZHENG H J, SHI T, et al. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation[J]. International Dairy Journal,2016,56:141−150. doi: 10.1016/j.idairyj.2016.01.019
|
[14] |
MUCCHETTI G, LOCCI F, MASSARA P, et al. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses[J]. Journal of Dairy Science,2002,85(10):2489−2496. doi: 10.3168/jds.S0022-0302(02)74331-2
|
[15] |
GARAULT P, LETORT C, JUILLARD V, et a1. Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk[J]. Applied and Environmental Microbiology,2000,66(12):5128−5133. doi: 10.1128/AEM.66.12.5128-5133.2000
|
[16] |
SERRAZANETTI D I, GUERZONI M E, CORSETTI A, et a1. Metabolic impact and potential exploitation of the stress reaction in Lactobacilli[J]. Food Microbiology,2009,26(7):700−711. doi: 10.1016/j.fm.2009.07.007
|
[17] |
刘文俊. 嗜热链球菌和保加利亚乳杆菌产酸、风味特性及其功能基因分型和表达研究[D]. 呼和浩特: 内蒙古农业大学, 2014.
LIU W J. Characteristics of acid and flavor-producing Streptococcus thermophilus and Lactobacillus bulgaricus, as well as their functional gene typing and expression[D]. Hohhot: Inner Mongolia Agricultural University, 2014.
|
[18] |
柴茂. 双歧杆菌对便秘的缓解作用及其机制分析[D]. 无锡: 江南大学, 2021.
CHAI M. Analysis of relieving effect of Bifidobacterium on constipation and its mechanism[D]. Wuxi: Jiangnan University, 2021.
|
[19] |
HILL D, SUGRUE I, TOBIN C, et al. The Lactobacillus casei group: History and health related applications[J]. Frontiers in Microbiology,2018,19:2107.
|
[20] |
孙浩天. 发酵乳中干酪Zhang与乳双歧V9生长和代谢互作机制研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
SUN H T. Growth and metabolic interaction of Lactobacillus casei Zhang and Bifidobacterium animalis subsp. lactis V9 in yoghurt fermentation[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[21] |
JUILLARD V, LE BARS D, KUNJI E R, et al. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk[J]. Applied and Environmental Microbiology,1995,61(8):3024−3030. doi: 10.1128/aem.61.8.3024-3030.1995
|
[22] |
CANON F, MAILLARD M B, HENRY G, et al. Positive interactions between lactic acid bacteria promoted by nitrogen-based nutritional dependencies[J]. Applied and Environmental Microbiology,2021,87(20):e01055−21.
|
[23] |
鲁笛, 缪元浩, 张邑恒, 等. 4种乳酸菌之间的相互作用比较[J]. 现代农业科技,2019(20):226−232. [LU D, MIAO Y H, ZHANG Y H, et al. Comparison of interactions among four kinds of lactic acid bacteria[J]. Food Industry Science and Technology,2019(20):226−232.
LU D, MIAO Y H, ZHANG Y H, et al. Comparison of interactions among four kinds of lactic acid bacteria[J]. Food Industry Science and Technology, 2019(20): 226-232.
|
[24] |
刘学云, 于新, 何嘉敏, 等. 九种益生菌之间的相互作用及协同共生机理[J]. 食品与发酵工业,2019,45(13):65−70. [LIU X Y, YU X, HE J M, et al. Interaction and synergistic symbiosis mechanism among nine probiotics[J]. Food and Fermentation Industries,2019,45(13):65−70.
LIU X Y, YU X, HE J M, et al. Interaction and synergistic symbiosis mechanism among nine probiotics[J]. Food and Fermentation Industries, 2019, 45(13): 65-70.
|
[25] |
CLARE A, ANTHONY O L, JEFF G. Pairing off: A bottom-up approach to the human gut microbiome[J]. Molecular Systems Biology,2018,14(6):e8425. doi: 10.15252/msb.20188425
|
[26] |
VAN DE GUCHTE M, EHRLICH S D, MAGUIN E. Production of growth-inhibiting factors by Lactobacillus delbrueckii[J]. Journal of Applied Microbiology,2001,9l:147−153.
|
[27] |
VINDEROLA C G, MOCCHIUTTI P, REINHEIMER J A. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products[J]. Journal of Dairy Science,2002,85(4):721−729. doi: 10.3168/jds.S0022-0302(02)74129-5
|
[28] |
CAVALIERE M, FENG S, SOYER O S, et al. Cooperation in microbial communities and their biotechnological applications[J]. Environmental Microbiology,2017,19(8):2949−2963. doi: 10.1111/1462-2920.13767
|
[29] |
CANON F, NIDELET T, GUÉDON E, et al. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures[J]. Frontiers in Microbiology,2020,11:2088. doi: 10.3389/fmicb.2020.02088
|
[30] |
D'SOUZA G, SHITUT S, PREUSSGER D, et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria[J]. Natural Product Reports,2018,35(5):455−488. doi: 10.1039/C8NP00009C
|
[31] |
白少峰, 陈华海, 王欣, 等. 双歧杆菌胞外多糖研究进展[J]. 中国微生态学杂志,2017,29(10):1207−1211, 1218. [BAI S F, CHEN H H, WANG X, et al. Research progress of Bifidobacterium extracellular polysaccharides[J]. Chinese Journal of Microecology,2017,29(10):1207−1211, 1218.
BAI S F, CHEN H H, WANG X, et al. Research progress of Bifidobacterium extracellular polysaccharides[J]. Chinese Journal of Microecology, 2017, 29(10): 1207-1211, 1218.
|
[32] |
SETTACHAIMONGKON S, NOUT M J R, FERNANDES E C A, et al. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt[J]. International Journal of Food Microbiology,2014,177:29−36. doi: 10.1016/j.ijfoodmicro.2014.02.008
|
[33] |
刘学云, 于新, 何嘉敏, 等. 三种乳酸菌相互作用及混合发酵条件优化研究[C]. 健康中国2030·健康食品的安全与创新“学术研讨会暨2018年广东省食品学会年会论文集”, 2018: 41−47
LIU X Y, YU X, HE J M, et al. Study on the interaction of three lactic acid bacteria and optimization of mixed fermentation conditions[C]. Healthy China 2030·Safety and Innovation of Healthy Food "Academic Seminar and Proceedings of the 2018 Guangdong Food Society Annual Meeting", 2018: 41−47.
|
[34] |
PANG X, SONG X, CHEN M, et al. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry[J]. Comprehensive Reviews in Food Science and Food Safety,2022,21(2):1657−1676. doi: 10.1111/1541-4337.12922
|
[35] |
吴学友, 朱悦, 陈正行, 等. 乳酸菌细菌素Durancin GL对单增李斯特菌的抗菌活性及机制[J]. 食品科学,2019,40(23):731. [WU X Y, ZHU Y, CHEN Z X, et al. Antibacterial activity and mechanism of lactic acid bacteriocin Durancin GL against Listeria monocytogenes[J]. Food Science and Technology,2019,40(23):731.
WU X Y, ZHU Y , CHEN Z X, et al. Antibacterial activity and mechanism of lactic acid bacteriocin Durancin GL against Listeria monocytogenes[J]. Food Science and Technology, 2019, 40(23): 731.
|
[36] |
郭本恒. 益生菌[M]. 北京: 化学工业出版社, 2004: 441
GUO B H. Probiotics[M]. Beijing: Chemical Industry Press, 2004: 441.
|
[37] |
PARK H, SHIN H, LEE K, et al. Autoinducer-2 properties of kimchi are associated with lactic acid bacteria involved in its fermentation[J]. International Journal of Food Microbiology,2016,225:38−42. doi: 10.1016/j.ijfoodmicro.2016.03.007
|
[38] |
LIU L, WU R Y, ZHANG J L, et al. Overexpression of luxS promotes stress resistance and biofilm formation of Lactobacillus paraplantarum L-ZS9 by regulating the expression of multiple genes[J]. Frontiers in Microbiology,2018,9:2628. doi: 10.3389/fmicb.2018.02628
|
[39] |
JOHANSEN P, JESPERSEN L. Impact of quorum sensing on the quality of fermented foods[J]. Current Opinion in Food Science,2017,13:16−25. doi: 10.1016/j.cofs.2017.01.001
|
[40] |
WASFI R, EL-RAHMAN O A A, ZAFER M M, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans[J]. Journal of Cellular and Molecular Medicine,2018,22(3):1972−1983. doi: 10.1111/jcmm.13496
|
[41] |
PEZZULO A A, HOMICK E E, RECTOR M V, et al. Expression of human paraoxonase 1 decreases superoxide levels and alters bacterial colonization in the gut of Drosophila melanogaster[J]. PLoS One,2012,7(8):e43777. doi: 10.1371/journal.pone.0043777
|
[42] |
YAO Q F, QI S H. Advance in quorum sensing autoinducers among microbes[J]. Journal of Microbiology,2015,35(4):63−71.
|
[43] |
PANG X Y, ZHU Q, LU J, et al. Progress in quorum sensing system of lactic acid bacteria[J]. Chinese Journal of Bioprocess Engineering,2020,18(2):141−149.
|
[44] |
张筠, 赵晶, 陈喜君, 等. 鼠李糖乳杆菌与嗜热链球菌协同发酵制备酸花生乳研究[J]. 食品工业科技,2020,41(24):143−149, 156. [ZHANG Y, ZHAO J, CHEN X J, et al. Study on preparation of sour peanut milk by cooperative fermentation of Lactobacillus rhamnosus and Streptococcus thermophiles[J]. Science and Technology of Food Industry,2020,41(24):143−149, 156.
ZHANG Y, ZHAO J, CHEN X J, et al. Study on preparation of sour peanut milk by cooperative fermentation of Lactobacillus rhamnosus and Streptococcus thermophiles[J]. Science and Technology of Food Industry, 2020, 41(24): 143-149, 156.
|
[45] |
张臣臣, 於和飞, 张兆俊, 等. 嗜热链球菌对瑞士乳杆菌发酵乳后酸化的影响[J]. 乳业科学与技术,2018,41(5):1−5. [ZHANG C C, YU H F, ZHANG Z J, et al. Effect of Streptococcus thermophilus on acidification of fermented milk by Lactobacillus helveticus[J]. Journal of Dairy Science and Technology,2018,41(5):1−5.
ZHANG C C, YU H F, ZHANG Z J, et al. Effect of Streptococcus thermophilus on acidification of fermented milk by Lactobacillus helveticus[J]. Journal of Dairy Science and Technology, 2018, 41(5): 1-5.
|
[46] |
姜滢滢, 朱双双, 章苗, 等. 微生物共培养研究进展[J]. 中国微生态学杂志,2017,29(2):239−244. [JIANG Y Y, ZHU S S, ZHANG M, et al. Research progress of microbial co-culture[J]. Chinese Journal of Microecology,2017,29(2):239−244.
JIANG Y Y, ZHU S S, ZHANG M, et al. Research progress of microbial co-culture[J]. Chinese Journal of Microecology, 2017, 29(2): 239-244.
|
[47] |
ZHANG S S, XU Z S, QIN L H, et al. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures[J]. Journal of Dairy Science,2020,103(4):3045−3054. doi: 10.3168/jds.2019-17347
|
[48] |
KIMTOT-NIRA H, AOKI R, MIZUMACHI K, et al. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: Development of a new starter culture[J]. Journal of Dairy Science,2012,95(4):2176−2185. doi: 10.3168/jds.2011-4824
|
[49] |
NISHIYAMA K, KOBAYASHI T, SATO Y, et al. A double-blind controlled study to evaluate the effects of yogurt enriched with Lactococcus lactis 11/19-b1 and Bifidobacterium lactis on serum low-density lipoprotein level and antigen-specific interferon-γ releasing ability[J]. Nutrients,2018,10(11):1778. doi: 10.3390/nu10111778
|
[50] |
李培培, 武婷, 杨阳, 等. 副干酪乳酪杆菌PC-01和青春双歧杆菌B8589在复合益生菌发酵乳饮料中的应用研究[C]. 第十七届益生菌与健康国际研讨会摘要集, 2022: 31−32.
LI P P, WU T, YANG Y, et al. Study on application of Lactobacillus paracasei PC-01 and Bifidobacterium adolescentis B8589 in compound probiotic fermented milk beverage[C]. Summary of the 17th International Symposium on Probiotics and Health, 2022: 31−32.
|
[51] |
白晓晔. 干酪乳杆菌Zhang和动物双歧杆菌乳亚种V9发酵乳缓解便秘机制研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
BAI X Y. Study on the mechanism of Lactobacillus casei Zhang and Bifidobacterium lactis V9 fermented milk to relieve constipation[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
|
[52] |
MARTEAU P, LE NEVE B, QUINQUIS L, et al. Consumption of a fermented milk product containing Bifidobacterium lactis CNCM1-2494 in women complaining of minor digestive symptoms: Rapic response which is independent of dietary fibre intake or physical activity[J]. Nutrients,2019,11(1):1−8.
|
1. |
孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 .
![]() | |
2. |
许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
![]() | |
3. |
郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
![]() | |
4. |
范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
![]() | |
5. |
莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
![]() | |
6. |
龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
![]() | |
7. |
董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
![]() | |
8. |
刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
![]() | |
9. |
王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 .
![]() | |
10. |
王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
![]() | |
11. |
王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .
![]() |