XIE Jiaqi, ZHAO Jie. Interaction Mechanism of Lactic Acid Bacteria in Fermented Milk and Its Effect on Product Characteristics[J]. Science and Technology of Food Industry, 2023, 44(17): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090021.
Citation: XIE Jiaqi, ZHAO Jie. Interaction Mechanism of Lactic Acid Bacteria in Fermented Milk and Its Effect on Product Characteristics[J]. Science and Technology of Food Industry, 2023, 44(17): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090021.

Interaction Mechanism of Lactic Acid Bacteria in Fermented Milk and Its Effect on Product Characteristics

More Information
  • Received Date: September 04, 2022
  • Available Online: July 03, 2023
  • As an important microbial resource in the fields of food, agriculture and medicine, lactic acid bacteria have good development prospects. A long period of production experience has found that some important biochemical reaction process is difficult to complete by one bacterial starter during fermentation, and two or more microbial co-culture, namely mixed culture, are needed. This paper briefly describes the interaction mechanism between different lactic acid bacteria strains in fermented milk and the effect of mixed culture of lactic acid bacteria on the sensory and nutritional characteristics of fermented dairy products. Uncover the interaction mode and mechanism among lactic acid bacteria flora in fermented milk is conducive to improving substrate conversion rate and process performance of product, which provides a theoretical reference for lactic acid bacteria co-culture in yield regulation, product functionalization and resource utilization.
  • [1]
    中华人民共和国卫生部. GB 19302-2010食品安全国家标准发酵乳[S]. 北京: 中国标准出版社, 2010.

    Ministry of Health of the People's Republic of China. GB 19302-2010 Food safety national standard fermented milk[S]. Beijing: China Standards Press, 2010.
    [2]
    GARCÍA-BURGOS M, MORENO-FERNÁNDEZ J, ALFÉREZ M J M, et al. New perspectives in fermented dairy products and their health relevance[J]. Journal of Functional Foods,2020,72:104059. doi: 10.1016/j.jff.2020.104059
    [3]
    SHARMA H, OZOGUL F, BARKIENE E, et al. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products[J]. Critical Reviews in Food Science and Nutrition,2021,30:1−23.
    [4]
    TARRAH A, VINÍCIUS, DE CASTILHOS J, et al. Probiotic potential and biofilm inhibitory activity of Lactobacillus casei group strains isolated from infant feces[J]. Journal of Functional Foods,2019,54:489−497. doi: 10.1016/j.jff.2019.02.004
    [5]
    左梦楠, 刘伟, 全琦, 等. 乳酸菌高密度培养技术的研究进展[J]. 食品工业科技,2022,43(19):436, 445−445. [ZUO M N, LIU W, QUAN Q, et al. Research progress of high density culture of lactic acid bacteria[J]. Food Industry Science and Technology,2022,43(19):436, 445−445.

    ZUO M N, LIU W, QUAN Q, et al. Research progress of high density culture of lactic acid bacteria[J]. Food Industry Science and Technology, 2022, 43(19): 436, 445.
    [6]
    CUCICK A, GIANNI K, TODOROV S D, et al. Evaluation of the bioavailability and intestinal effects of milk fermented by folate producing lactic acid bacteria in a depletion/repletion mice model[J]. Journal of Functional Foods,2020,66:103−785.
    [7]
    李权威, 张开屏, 赵艳红, 等. 乳酸菌调控胆固醇代谢关键因子的研究进展[J]. 中国食品学报,2021,21(1):341−350. [LI Q W, ZHANG K P, ZHAO Y H, et al. Research progress on key factors of cholesterol metabolism regulated by lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):341−350.

    LI Q W, ZHANG K Z, ZHAO Y H, et al. Research progress on key factors of cholesterol metabolism regulated by lactic acid bacteria[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 341-350.
    [8]
    王淑梅, 邸维, 妥彦峰, 等. 益生菌的免疫调控作用研究进展[J]. 粮食与油脂,2021,34(5):23−26. [WANG S M, DI W, TUO Y F, et al. Research progress on immune regulation of probiotics[J]. Cereals & Oils,2021,34(5):23−26.

    WANG S M, DI W, TUO Y F, et al. Research progress on immune regulation of probiotics[J]. Cereals & Oils, 2021, 34(5): 23-26.
    [9]
    YONEZAWA S, XIAO J Z, ODAMAKI T, et al. Improved growth of Bifidobacteria by cocultivation with Lactococcuslactis subspecies lactis[J]. Journal of Dairy Science,2010,93(5):1815−1823. doi: 10.3168/jds.2009-2708
    [10]
    赵春雨, 曲晓军, 崔艳华, 等. 德氏乳杆菌保加利亚亚种和嗜热链球菌的共生机制研究进展[J]. 乳业科学与技术,2015,38(4):21−24. [ZHAO C Y, QU X J, CUI Y H, et al. Research progress on symbiotic mechanism of Lactobacillus bulgaricus and Streptococcus thermophiles[J]. Journal of Dairy Science and Technology,2015,38(4):21−24.

    ZHAO C Y, QU X J, CUI Y H, et al. Research progress on symbiotic mechanism of Lactobacillus bulgaricus and Streptococcus thermophiles[J]. Journal of Dairy Science and Technology, 2015, 38(4): 21-24.
    [11]
    KURT S, JOAKIM M A, RODOLPHE B. Short communication: Transcriptional response to a large genomic island deletion in the dairy starter culture Streptococcus thermophilus[J]. Journal of Dairy Science,2019,102(9):7800−7806. doi: 10.3168/jds.2019-16397
    [12]
    YAMAUCHI R, MAGUIN E, HORIUCHI H et al. The critical role of urease in yogurt fermentation with various combinations of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus[J]. Journal of Dairy Science,2019,102(2):1033−1043. doi: 10.3168/jds.2018-15192
    [13]
    LIU E, ZHENG H J, SHI T, et al. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation[J]. International Dairy Journal,2016,56:141−150. doi: 10.1016/j.idairyj.2016.01.019
    [14]
    MUCCHETTI G, LOCCI F, MASSARA P, et al. Production of pyroglutamic acid by thermophilic lactic acid bacteria in hard-cooked mini-cheeses[J]. Journal of Dairy Science,2002,85(10):2489−2496. doi: 10.3168/jds.S0022-0302(02)74331-2
    [15]
    GARAULT P, LETORT C, JUILLARD V, et a1. Branched-chain amino acid biosynthesis is essential for optimal growth of Streptococcus thermophilus in milk[J]. Applied and Environmental Microbiology,2000,66(12):5128−5133. doi: 10.1128/AEM.66.12.5128-5133.2000
    [16]
    SERRAZANETTI D I, GUERZONI M E, CORSETTI A, et a1. Metabolic impact and potential exploitation of the stress reaction in Lactobacilli[J]. Food Microbiology,2009,26(7):700−711. doi: 10.1016/j.fm.2009.07.007
    [17]
    刘文俊. 嗜热链球菌和保加利亚乳杆菌产酸、风味特性及其功能基因分型和表达研究[D]. 呼和浩特: 内蒙古农业大学, 2014.

    LIU W J. Characteristics of acid and flavor-producing Streptococcus thermophilus and Lactobacillus bulgaricus, as well as their functional gene typing and expression[D]. Hohhot: Inner Mongolia Agricultural University, 2014.
    [18]
    柴茂. 双歧杆菌对便秘的缓解作用及其机制分析[D]. 无锡: 江南大学, 2021.

    CHAI M. Analysis of relieving effect of Bifidobacterium on constipation and its mechanism[D]. Wuxi: Jiangnan University, 2021.
    [19]
    HILL D, SUGRUE I, TOBIN C, et al. The Lactobacillus casei group: History and health related applications[J]. Frontiers in Microbiology,2018,19:2107.
    [20]
    孙浩天. 发酵乳中干酪Zhang与乳双歧V9生长和代谢互作机制研究[D]. 呼和浩特: 内蒙古农业大学, 2020.

    SUN H T. Growth and metabolic interaction of Lactobacillus casei Zhang and Bifidobacterium animalis subsp. lactis V9 in yoghurt fermentation[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
    [21]
    JUILLARD V, LE BARS D, KUNJI E R, et al. Oligopeptides are the main source of nitrogen for Lactococcus lactis during growth in milk[J]. Applied and Environmental Microbiology,1995,61(8):3024−3030. doi: 10.1128/aem.61.8.3024-3030.1995
    [22]
    CANON F, MAILLARD M B, HENRY G, et al. Positive interactions between lactic acid bacteria promoted by nitrogen-based nutritional dependencies[J]. Applied and Environmental Microbiology,2021,87(20):e01055−21.
    [23]
    鲁笛, 缪元浩, 张邑恒, 等. 4种乳酸菌之间的相互作用比较[J]. 现代农业科技,2019(20):226−232. [LU D, MIAO Y H, ZHANG Y H, et al. Comparison of interactions among four kinds of lactic acid bacteria[J]. Food Industry Science and Technology,2019(20):226−232.

    LU D, MIAO Y H, ZHANG Y H, et al. Comparison of interactions among four kinds of lactic acid bacteria[J]. Food Industry Science and Technology, 2019(20): 226-232.
    [24]
    刘学云, 于新, 何嘉敏, 等. 九种益生菌之间的相互作用及协同共生机理[J]. 食品与发酵工业,2019,45(13):65−70. [LIU X Y, YU X, HE J M, et al. Interaction and synergistic symbiosis mechanism among nine probiotics[J]. Food and Fermentation Industries,2019,45(13):65−70.

    LIU X Y, YU X, HE J M, et al. Interaction and synergistic symbiosis mechanism among nine probiotics[J]. Food and Fermentation Industries, 2019, 45(13): 65-70.
    [25]
    CLARE A, ANTHONY O L, JEFF G. Pairing off: A bottom-up approach to the human gut microbiome[J]. Molecular Systems Biology,2018,14(6):e8425. doi: 10.15252/msb.20188425
    [26]
    VAN DE GUCHTE M, EHRLICH S D, MAGUIN E. Production of growth-inhibiting factors by Lactobacillus delbrueckii[J]. Journal of Applied Microbiology,2001,9l:147−153.
    [27]
    VINDEROLA C G, MOCCHIUTTI P, REINHEIMER J A. Interactions among lactic acid starter and probiotic bacteria used for fermented dairy products[J]. Journal of Dairy Science,2002,85(4):721−729. doi: 10.3168/jds.S0022-0302(02)74129-5
    [28]
    CAVALIERE M, FENG S, SOYER O S, et al. Cooperation in microbial communities and their biotechnological applications[J]. Environmental Microbiology,2017,19(8):2949−2963. doi: 10.1111/1462-2920.13767
    [29]
    CANON F, NIDELET T, GUÉDON E, et al. Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures[J]. Frontiers in Microbiology,2020,11:2088. doi: 10.3389/fmicb.2020.02088
    [30]
    D'SOUZA G, SHITUT S, PREUSSGER D, et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria[J]. Natural Product Reports,2018,35(5):455−488. doi: 10.1039/C8NP00009C
    [31]
    白少峰, 陈华海, 王欣, 等. 双歧杆菌胞外多糖研究进展[J]. 中国微生态学杂志,2017,29(10):1207−1211, 1218. [BAI S F, CHEN H H, WANG X, et al. Research progress of Bifidobacterium extracellular polysaccharides[J]. Chinese Journal of Microecology,2017,29(10):1207−1211, 1218.

    BAI S F, CHEN H H, WANG X, et al. Research progress of Bifidobacterium extracellular polysaccharides[J]. Chinese Journal of Microecology, 2017, 29(10): 1207-1211, 1218.
    [32]
    SETTACHAIMONGKON S, NOUT M J R, FERNANDES E C A, et al. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt[J]. International Journal of Food Microbiology,2014,177:29−36. doi: 10.1016/j.ijfoodmicro.2014.02.008
    [33]
    刘学云, 于新, 何嘉敏, 等. 三种乳酸菌相互作用及混合发酵条件优化研究[C]. 健康中国2030·健康食品的安全与创新“学术研讨会暨2018年广东省食品学会年会论文集”, 2018: 41−47

    LIU X Y, YU X, HE J M, et al. Study on the interaction of three lactic acid bacteria and optimization of mixed fermentation conditions[C]. Healthy China 2030·Safety and Innovation of Healthy Food "Academic Seminar and Proceedings of the 2018 Guangdong Food Society Annual Meeting", 2018: 41−47.
    [34]
    PANG X, SONG X, CHEN M, et al. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry[J]. Comprehensive Reviews in Food Science and Food Safety,2022,21(2):1657−1676. doi: 10.1111/1541-4337.12922
    [35]
    吴学友, 朱悦, 陈正行, 等. 乳酸菌细菌素Durancin GL对单增李斯特菌的抗菌活性及机制[J]. 食品科学,2019,40(23):731. [WU X Y, ZHU Y, CHEN Z X, et al. Antibacterial activity and mechanism of lactic acid bacteriocin Durancin GL against Listeria monocytogenes[J]. Food Science and Technology,2019,40(23):731.

    WU X Y, ZHU Y , CHEN Z X, et al. Antibacterial activity and mechanism of lactic acid bacteriocin Durancin GL against Listeria monocytogenes[J]. Food Science and Technology, 2019, 40(23): 731.
    [36]
    郭本恒. 益生菌[M]. 北京: 化学工业出版社, 2004: 441

    GUO B H. Probiotics[M]. Beijing: Chemical Industry Press, 2004: 441.
    [37]
    PARK H, SHIN H, LEE K, et al. Autoinducer-2 properties of kimchi are associated with lactic acid bacteria involved in its fermentation[J]. International Journal of Food Microbiology,2016,225:38−42. doi: 10.1016/j.ijfoodmicro.2016.03.007
    [38]
    LIU L, WU R Y, ZHANG J L, et al. Overexpression of luxS promotes stress resistance and biofilm formation of Lactobacillus paraplantarum L-ZS9 by regulating the expression of multiple genes[J]. Frontiers in Microbiology,2018,9:2628. doi: 10.3389/fmicb.2018.02628
    [39]
    JOHANSEN P, JESPERSEN L. Impact of quorum sensing on the quality of fermented foods[J]. Current Opinion in Food Science,2017,13:16−25. doi: 10.1016/j.cofs.2017.01.001
    [40]
    WASFI R, EL-RAHMAN O A A, ZAFER M M, et al. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans[J]. Journal of Cellular and Molecular Medicine,2018,22(3):1972−1983. doi: 10.1111/jcmm.13496
    [41]
    PEZZULO A A, HOMICK E E, RECTOR M V, et al. Expression of human paraoxonase 1 decreases superoxide levels and alters bacterial colonization in the gut of Drosophila melanogaster[J]. PLoS One,2012,7(8):e43777. doi: 10.1371/journal.pone.0043777
    [42]
    YAO Q F, QI S H. Advance in quorum sensing autoinducers among microbes[J]. Journal of Microbiology,2015,35(4):63−71.
    [43]
    PANG X Y, ZHU Q, LU J, et al. Progress in quorum sensing system of lactic acid bacteria[J]. Chinese Journal of Bioprocess Engineering,2020,18(2):141−149.
    [44]
    张筠, 赵晶, 陈喜君, 等. 鼠李糖乳杆菌与嗜热链球菌协同发酵制备酸花生乳研究[J]. 食品工业科技,2020,41(24):143−149, 156. [ZHANG Y, ZHAO J, CHEN X J, et al. Study on preparation of sour peanut milk by cooperative fermentation of Lactobacillus rhamnosus and Streptococcus thermophiles[J]. Science and Technology of Food Industry,2020,41(24):143−149, 156.

    ZHANG Y, ZHAO J, CHEN X J, et al. Study on preparation of sour peanut milk by cooperative fermentation of Lactobacillus rhamnosus and Streptococcus thermophiles[J]. Science and Technology of Food Industry, 2020, 41(24): 143-149, 156.
    [45]
    张臣臣, 於和飞, 张兆俊, 等. 嗜热链球菌对瑞士乳杆菌发酵乳后酸化的影响[J]. 乳业科学与技术,2018,41(5):1−5. [ZHANG C C, YU H F, ZHANG Z J, et al. Effect of Streptococcus thermophilus on acidification of fermented milk by Lactobacillus helveticus[J]. Journal of Dairy Science and Technology,2018,41(5):1−5.

    ZHANG C C, YU H F, ZHANG Z J, et al. Effect of Streptococcus thermophilus on acidification of fermented milk by Lactobacillus helveticus[J]. Journal of Dairy Science and Technology, 2018, 41(5): 1-5.
    [46]
    姜滢滢, 朱双双, 章苗, 等. 微生物共培养研究进展[J]. 中国微生态学杂志,2017,29(2):239−244. [JIANG Y Y, ZHU S S, ZHANG M, et al. Research progress of microbial co-culture[J]. Chinese Journal of Microecology,2017,29(2):239−244.

    JIANG Y Y, ZHU S S, ZHANG M, et al. Research progress of microbial co-culture[J]. Chinese Journal of Microecology, 2017, 29(2): 239-244.
    [47]
    ZHANG S S, XU Z S, QIN L H, et al. Low-sugar yogurt making by the co-cultivation of Lactobacillus plantarum WCFS1 with yogurt starter cultures[J]. Journal of Dairy Science,2020,103(4):3045−3054. doi: 10.3168/jds.2019-17347
    [48]
    KIMTOT-NIRA H, AOKI R, MIZUMACHI K, et al. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: Development of a new starter culture[J]. Journal of Dairy Science,2012,95(4):2176−2185. doi: 10.3168/jds.2011-4824
    [49]
    NISHIYAMA K, KOBAYASHI T, SATO Y, et al. A double-blind controlled study to evaluate the effects of yogurt enriched with Lactococcus lactis 11/19-b1 and Bifidobacterium lactis on serum low-density lipoprotein level and antigen-specific interferon-γ releasing ability[J]. Nutrients,2018,10(11):1778. doi: 10.3390/nu10111778
    [50]
    李培培, 武婷, 杨阳, 等. 副干酪乳酪杆菌PC-01和青春双歧杆菌B8589在复合益生菌发酵乳饮料中的应用研究[C]. 第十七届益生菌与健康国际研讨会摘要集, 2022: 31−32.

    LI P P, WU T, YANG Y, et al. Study on application of Lactobacillus paracasei PC-01 and Bifidobacterium adolescentis B8589 in compound probiotic fermented milk beverage[C]. Summary of the 17th International Symposium on Probiotics and Health, 2022: 31−32.
    [51]
    白晓晔. 干酪乳杆菌Zhang和动物双歧杆菌乳亚种V9发酵乳缓解便秘机制研究[D]. 呼和浩特: 内蒙古农业大学, 2020.

    BAI X Y. Study on the mechanism of Lactobacillus casei Zhang and Bifidobacterium lactis V9 fermented milk to relieve constipation[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
    [52]
    MARTEAU P, LE NEVE B, QUINQUIS L, et al. Consumption of a fermented milk product containing Bifidobacterium lactis CNCM1-2494 in women complaining of minor digestive symptoms: Rapic response which is independent of dietary fibre intake or physical activity[J]. Nutrients,2019,11(1):1−8.
  • Cited by

    Periodical cited type(11)

    1. 孟春杨,吴玉田,彭蕾,钟雪,邹璐,刘文政,周贻兵. 超高效液相色谱-串联质谱法检测卤肉中4种β-受体激动剂残留. 食品工业科技. 2024(01): 277-283 . 本站查看
    2. 许晶晶,邵彪,管燕淼,李玲玉,钱佳燕. 市售牛肉中瘦肉精残留检测及风险评估. 福建分析测试. 2024(02): 7-15 .
    3. 郑梓扬. 一站式QuEChERS法结合UPLC-MS/MS测定动物性食品中18种β-受体激动剂残留. 食品安全导刊. 2024(16): 101-107 .
    4. 范力欣,杨丽琼,任晓伟,杨层层,孟志娟,范素芳. PRi ME MCX固相萃取柱结合超高效液相色谱-串联质谱法测定乳及乳制品中25种β-受体激动剂. 乳业科学与技术. 2024(03): 16-25 .
    5. 莫紫梅,王海波,袁光蔚,叶金,吴宇,伍先绍. 六堡茶中多种真菌毒素测定前处理方法的优化. 中国食品添加剂. 2023(02): 255-267 .
    6. 龚波,王峻,董文婷,陈向丹,李菁菁,金秀娥,周平. 超高效液相色谱-串联质谱法测定猪尿中7种α_2-受体激动剂残留. 中国兽药杂志. 2023(07): 16-24 .
    7. 董洁琼,肖琎,周鑫,李宁,王雪松,康俊杰. 超高效液相色谱-串联质谱测定畜肉中14种β-受体激动剂. 色谱. 2023(12): 1106-1114 .
    8. 刘学芝,赵英莲,马跃,董诗诗,王彬,张洋. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留. 色谱. 2022(02): 148-155 .
    9. 王溪,凌映茹,张昊,吉文亮. 超高效液相色谱-串联质谱法检测婴儿米粉中11种有机磷阻燃剂. 食品工业科技. 2022(17): 298-305 . 本站查看
    10. 王莉莉,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛. 通过式固相萃取柱结合QuEChERS前处理技术-液相色谱串联质谱法快速测定熟肉食品中4种β_2-受体激动剂残留. 食品安全质量检测学报. 2021(09): 3771-3776 .
    11. 王莉莉,陈雪营,张楠,刘平,刘伟,李丽萍,吴国华,赵榕,范赛,闫薪竹. 基质分离固相萃取-液相色谱-串联质谱法快速测定牛肉中4种β_2-受体激动剂类兽药残留. 食品安全质量检测学报. 2021(11): 4647-4653 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (369) PDF downloads (71) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return