Citation: | WANG Guizhen, LIU Hongtao, YANG Xiubai, et al. Inhibition of Myristic Acid on Suilysin and the Molecular Mechanism[J]. Science and Technology of Food Industry, 2023, 44(15): 62−68. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080344. |
[1] |
GOTTSCHALK M, XU J, CALZAS C, et al. Streptococcus suis: A new emerging or an old neglected zoonotic pathogen?[J]. Future Microbiology,2010,5(3):371−391. doi: 10.2217/fmb.10.2
|
[2] |
WANG J, LIANG P, SUN H, et al. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains[J]. Virulence,2022,13(1):1455−1470. doi: 10.1080/21505594.2022.2116160
|
[3] |
GOYETTE-DESJARDINS G, AUGER J P, XU J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent| [mdash]| an update on the worldwide distribution based on serotyping and sequence typing[J]. Emerging Microbes & Infections,2014,3(6):e45.
|
[4] |
GOTTSCHALK M, XU J, LECOURS M P, et al. Streptococcus suis infections in humans: What is the prognosis for Western countries? (Part II)[J]. Clinical Microbiology Newsletter,2010,32(13):97−102. doi: 10.1016/j.clinmicnews.2010.06.001
|
[5] |
ZHONG X, MA J, BAI Q, et al. Identification of the RNA-binding domain-containing protein RbpA that acts as a global regulator of the pathogenicity of Streptococcus suis serotype 2[J]. Virulence,2022,13(1):1304−1314. doi: 10.1080/21505594.2022.2103233
|
[6] |
YU H, JING H, CHEN Z, et al. Human Streptococcus suis outbreak, Sichuan, China[J]. Emerging Infectious Diseases,2006,12(6):914. doi: 10.3201/eid1206.051194
|
[7] |
MAREN S, PETER V, JORG W. Use of antibiotics and antimicrobial resistance in veterinary medicine as exemplified by the swine pathogen Streptococcus suis[M]. Curr Top Microbiol Immunol, 2016.
|
[8] |
TAN C, ZHANG A, CHEN H, et al. Recent proceedings on prevalence and pathogenesis of Streptococcus suis[J]. Current Issues in Molecular Biology,2019,32:473−520.
|
[9] |
HAAS B, GRENIER D. Understanding the virulence of Streptococcus suis: A veterinary, medical, and economic challenge[J]. Medecine Et Maladies Infectieuses,2017,48(3):159−166.
|
[10] |
LEUNG C, DUDKINA N V, LUKOYANOVA N, et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin[J]. ELife,2014,3:e04247. doi: 10.7554/eLife.04247
|
[11] |
TENENBAUM T, SEITZ M, SCHROTEN H, et al. Biological activities of suilysin: Role in Streptococcus suis pathogenesis[J]. Future Microbiology,2016,11:194.
|
[12] |
LUN S, PEREZ-CASAL J, CONNOR W, et al. Role of suilysin in pathogenesis of Streptococcus suis capsular serotype 2[J]. Microbial Pathogenesis,2003,34(1):27−37. doi: 10.1016/S0882-4010(02)00192-4
|
[13] |
VADEBONCOEUR N, SEGURA M, ALNUMANI D, et al. Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2[J]. Pathogens & Disease,2003,35(1):49−58.
|
[14] |
BI L L, PIAN Y Y, CHEN S L, et al. Toll-like receptor 4 confers inflammatory response to suilysin[J]. Frontiers in Microbiology,2015,6:644.
|
[15] |
SEITZ M, BAUMS C G, NEIS C, et al. Subcytolytic effects of suilysin on interaction of Streptococcus suis with epithelial cells[J]. Veterinary Microbiology,2013,167(3−4):584−591. doi: 10.1016/j.vetmic.2013.09.010
|
[16] |
DAN T , YUKIHIRO A , TATSUYA N, et al. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis[J]. Journal of Infectious Diseases,2014,209(10):1509−1519. doi: 10.1093/infdis/jit661
|
[17] |
翁绳美. 13-甲基肉豆蔻酸对小鼠的调节血糖作用[J]. 海峡药学,2005(6):46−48. [WENG S M. Effects of 13-methyltetradecanoic acid on the regulation of blood glucose[J]. Straits Pharmacy,2005(6):46−48. doi: 10.3969/j.issn.1006-3765.2005.06.022
WENG S M. Effects of 13-methyltetradecanoic acid on the regulation of blood glucose[J]. Straits Pharmacy, 2005(6): 46-48. doi: 10.3969/j.issn.1006-3765.2005.06.022
|
[18] |
何宏星, 翁绳美, 胡潇, 等. 13-甲基十四烷酸对大鼠局灶性缺血脑组织的保护作用[J]. 福建医科大学学报,2018,52(2):80−84. [HE H X, WENG S M, HU X, et al. Protective effects of 13-methyltetradecanoic acid on focal cerebral ischemia in rats[J]. Journal of Fujian Medical University,2018,52(2):80−84. doi: 10.3969/j.issn.1672-4194.2018.02.003
HE H X, WENG S M, HU X, et al. Protective effects of 13-methyltetradecanoic acid on focal cerebral ischemia in rats [J]. Journal of Fujian Medical University, 2018, 52(2): 80-84. doi: 10.3969/j.issn.1672-4194.2018.02.003
|
[19] |
权美平. 13-甲基肉豆蔻酸抗肿瘤机制研究进展[J]. 动物医学进展,2013,34(9):103−106. [QUAN M P. Progress on anti-tumor mechanism of 13-methyltetradecanoic acid[J]. Progress in Veterinary Medicine,2013,34(9):103−106. doi: 10.3969/j.issn.1007-5038.2013.09.025
QUAN M P. Progress on anti-tumor mechanism of 13-methyltetradecanoic acid [J]. Progress in Veterinary Medicine, 2013, 34(9): 103-106. doi: 10.3969/j.issn.1007-5038.2013.09.025
|
[20] |
TROTT O, OLSON A J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry,2010,31(2):455−461.
|
[21] |
KUTZNER C, KNIEP C, CHERIAN A, et al. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design[J]. Journal of Chemical Information and Modeling,2022,62(7):1691−711. doi: 10.1021/acs.jcim.2c00044
|
[22] |
WANG T, ZHANG P, LÜ H, et al. A natural dietary flavone myricetin as an α-hemolysin inhibitor for controlling Staphylococcus aureus infection[J]. Frontiers in Cellular and Infection Microbiology,2020,10:330. doi: 10.3389/fcimb.2020.00330
|
[23] |
DONG J, ZHANG L, LIU Y, et al. Luteolin decreases the pathogenicity of Aeromonas hydrophila via inhibiting the activity of aerolysin[J]. Virulence,2021,12(1):165−76. doi: 10.1080/21505594.2020.1867455
|
[24] |
XU L, LU G, ZHAN B, et al. Uncovering the efficacy and mechanisms of genkwa flos and bioactive ingredient genkwanin against L. monocytogenes infection[J]. Journal of Ethnopharmacology,2022,297:115571. doi: 10.1016/j.jep.2022.115571
|
[25] |
WANG T, LIU B, ZHANG C, et al. Kaempferol-driven inhibition of listeriolysin O pore formation and inflammation suppresses Listeria monocytogenes infection[J]. Microbiology Spectrum,2022,10(4):e0181022. doi: 10.1128/spectrum.01810-22
|
[26] |
TINGTING W, TIANQI F, XINYU W, et al. Amentoflavone attenuates Listeria monocytogenes pathogenicity through an LLO-dependent mechanism[J]. British Journal of Pharmacology,2022,179(14):3839−3858. doi: 10.1111/bph.15827
|
[27] |
ZHANG J, LIU S, XIA L, et al. Verbascoside protects mice from Clostridial gas gangrene by inhibiting the activity of alpha toxin and perfringolysin O[J]. Front Microbiol,2020,11:1504. doi: 10.3389/fmicb.2020.01504
|
[28] |
KUMARI R, KUMAR R, LYNN A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations[J]. Journal of Chemical Information and Modeling,2014,54(7):1951−1962. doi: 10.1021/ci500020m
|
[29] |
VALDÉS-TRESANCO M S, VALDÉS-TRESANCO M E, VALIENTE P A, et al. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS[J]. Journal of Chemical Theory and Computation,2021,17(10):6281−6291. doi: 10.1021/acs.jctc.1c00645
|
[30] |
GREENE D, QI R, NGUYEN R, et al. Heterogeneous dielectric implicit membrane model for the calculation of MMPBSA binding free energies[J]. Journal of Chemical Information and Modeling,2019,59(6):3041−3056. doi: 10.1021/acs.jcim.9b00363
|
[31] |
LI G, SHEN X, WEI Y, et al. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation[J]. International Immunopharmacology,2019,69:71−78.
|
[32] |
MENG F, TONG J, VÖTSCH D, et al. Viral coinfection replaces effects of suilysin on Streptococcus suis adherence to and invasion of respiratory epithelial cells grown under air-liquid interface conditions[J]. Infection and Immunity,2019,87(8):e00350.
|
[33] |
BERCIER P, GOTTSCHALK M, GRENIER D. Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model[J]. Microb Pathog,2020,139:103913.
|
[34] |
VERHERSTRAETEN S, GOOSSENS E, VALGAEREN B, et al. Perfringolysin O: The underrated clostridium perfringens toxin?[J]. Toxins,2015,7(5):1702−1721. doi: 10.3390/toxins7051702
|
1. |
王露,蔡雷,刘奇华,崔春. 花椒籽粕蛋白质的酶提工艺研究. 中国调味品. 2025(01): 206-209 .
![]() | |
2. |
陶静,翁霞,王喜珠. 甘谷伏椒挥发油成分及抗氧化活性研究. 中国调味品. 2024(04): 79-84 .
![]() | |
3. |
李宁,梁世岳,刘正群,张敏,郑梓,王雪梅,闫峻,穆淑琴. 花椒籽对蛋鸡生产性能、血清指标及蛋品质的影响. 饲料研究. 2024(18): 35-39 .
![]() |