WANG Guizhen, LIU Hongtao, YANG Xiubai, et al. Inhibition of Myristic Acid on Suilysin and the Molecular Mechanism[J]. Science and Technology of Food Industry, 2023, 44(15): 62−68. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080344.
Citation: WANG Guizhen, LIU Hongtao, YANG Xiubai, et al. Inhibition of Myristic Acid on Suilysin and the Molecular Mechanism[J]. Science and Technology of Food Industry, 2023, 44(15): 62−68. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080344.

Inhibition of Myristic Acid on Suilysin and the Molecular Mechanism

More Information
  • Received Date: September 04, 2022
  • Available Online: June 05, 2023
  • To explore the inhibitory effect of myristic acid against suilysin biological activity and the interactive mechanism, pore-forming assay, oligomerization assay, molecular docking, molecular dynamics simulation, minimal inhibitory concentration assay and lactate dehydrogenase activity assays were performed. The results showed that the formation of suilysin oligomer significant decreased when the concentration of myristic acid was 16 μg/mL, thereby inhibiting the pore-forming activity of suilysin, the release of hemoglobin was 8.88% of the control group, and the inhibition rate reached 91.12%. The results of molecular docking and molecular dynamics simulation showed that myristic bound to the junction of domain one, two and three, and 82Asn, 83Asn, 84Ser, 87Ile, 88Ala, 90Ile, 193Phe, 194Gly, 275Phe, 372Ile, 373Leu, 374Ser contributed higher energy which were the critical residues during the binding. Myristic did not showed anti-Streptococcus suis character (MIC values was 128 μg/mL), and the release of lactic dehydrogenase in suilysin or Streptococcus suis treatment group was 67.84% and 45.72% of the control group when the cells received 16 μg/mL myristic treatment. Taken together, myristic inhibited the pore-forming of suilysin by affecting the formation of its oligomer based on a direct binding and protected cells from suilysin or Streptococcus suis cytotoxicity which promised it a candidate for developing anti-Streptococcus suis infection drug.
  • [1]
    GOTTSCHALK M, XU J, CALZAS C, et al. Streptococcus suis: A new emerging or an old neglected zoonotic pathogen?[J]. Future Microbiology,2010,5(3):371−391. doi: 10.2217/fmb.10.2
    [2]
    WANG J, LIANG P, SUN H, et al. Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of Streptococcus suis epidemic strains[J]. Virulence,2022,13(1):1455−1470. doi: 10.1080/21505594.2022.2116160
    [3]
    GOYETTE-DESJARDINS G, AUGER J P, XU J, et al. Streptococcus suis, an important pig pathogen and emerging zoonotic agent| [mdash]| an update on the worldwide distribution based on serotyping and sequence typing[J]. Emerging Microbes & Infections,2014,3(6):e45.
    [4]
    GOTTSCHALK M, XU J, LECOURS M P, et al. Streptococcus suis infections in humans: What is the prognosis for Western countries? (Part II)[J]. Clinical Microbiology Newsletter,2010,32(13):97−102. doi: 10.1016/j.clinmicnews.2010.06.001
    [5]
    ZHONG X, MA J, BAI Q, et al. Identification of the RNA-binding domain-containing protein RbpA that acts as a global regulator of the pathogenicity of Streptococcus suis serotype 2[J]. Virulence,2022,13(1):1304−1314. doi: 10.1080/21505594.2022.2103233
    [6]
    YU H, JING H, CHEN Z, et al. Human Streptococcus suis outbreak, Sichuan, China[J]. Emerging Infectious Diseases,2006,12(6):914. doi: 10.3201/eid1206.051194
    [7]
    MAREN S, PETER V, JORG W. Use of antibiotics and antimicrobial resistance in veterinary medicine as exemplified by the swine pathogen Streptococcus suis[M]. Curr Top Microbiol Immunol, 2016.
    [8]
    TAN C, ZHANG A, CHEN H, et al. Recent proceedings on prevalence and pathogenesis of Streptococcus suis[J]. Current Issues in Molecular Biology,2019,32:473−520.
    [9]
    HAAS B, GRENIER D. Understanding the virulence of Streptococcus suis: A veterinary, medical, and economic challenge[J]. Medecine Et Maladies Infectieuses,2017,48(3):159−166.
    [10]
    LEUNG C, DUDKINA N V, LUKOYANOVA N, et al. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin[J]. ELife,2014,3:e04247. doi: 10.7554/eLife.04247
    [11]
    TENENBAUM T, SEITZ M, SCHROTEN H, et al. Biological activities of suilysin: Role in Streptococcus suis pathogenesis[J]. Future Microbiology,2016,11:194.
    [12]
    LUN S, PEREZ-CASAL J, CONNOR W, et al. Role of suilysin in pathogenesis of Streptococcus suis capsular serotype 2[J]. Microbial Pathogenesis,2003,34(1):27−37. doi: 10.1016/S0882-4010(02)00192-4
    [13]
    VADEBONCOEUR N, SEGURA M, ALNUMANI D, et al. Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2[J]. Pathogens & Disease,2003,35(1):49−58.
    [14]
    BI L L, PIAN Y Y, CHEN S L, et al. Toll-like receptor 4 confers inflammatory response to suilysin[J]. Frontiers in Microbiology,2015,6:644.
    [15]
    SEITZ M, BAUMS C G, NEIS C, et al. Subcytolytic effects of suilysin on interaction of Streptococcus suis with epithelial cells[J]. Veterinary Microbiology,2013,167(3−4):584−591. doi: 10.1016/j.vetmic.2013.09.010
    [16]
    DAN T , YUKIHIRO A , TATSUYA N, et al. The contribution of suilysin to the pathogenesis of Streptococcus suis meningitis[J]. Journal of Infectious Diseases,2014,209(10):1509−1519. doi: 10.1093/infdis/jit661
    [17]
    翁绳美. 13-甲基肉豆蔻酸对小鼠的调节血糖作用[J]. 海峡药学,2005(6):46−48. [WENG S M. Effects of 13-methyltetradecanoic acid on the regulation of blood glucose[J]. Straits Pharmacy,2005(6):46−48. doi: 10.3969/j.issn.1006-3765.2005.06.022

    WENG S M. Effects of 13-methyltetradecanoic acid on the regulation of blood glucose[J]. Straits Pharmacy, 2005(6): 46-48. doi: 10.3969/j.issn.1006-3765.2005.06.022
    [18]
    何宏星, 翁绳美, 胡潇, 等. 13-甲基十四烷酸对大鼠局灶性缺血脑组织的保护作用[J]. 福建医科大学学报,2018,52(2):80−84. [HE H X, WENG S M, HU X, et al. Protective effects of 13-methyltetradecanoic acid on focal cerebral ischemia in rats[J]. Journal of Fujian Medical University,2018,52(2):80−84. doi: 10.3969/j.issn.1672-4194.2018.02.003

    HE H X, WENG S M, HU X, et al. Protective effects of 13-methyltetradecanoic acid on focal cerebral ischemia in rats [J]. Journal of Fujian Medical University, 2018, 52(2): 80-84. doi: 10.3969/j.issn.1672-4194.2018.02.003
    [19]
    权美平. 13-甲基肉豆蔻酸抗肿瘤机制研究进展[J]. 动物医学进展,2013,34(9):103−106. [QUAN M P. Progress on anti-tumor mechanism of 13-methyltetradecanoic acid[J]. Progress in Veterinary Medicine,2013,34(9):103−106. doi: 10.3969/j.issn.1007-5038.2013.09.025

    QUAN M P. Progress on anti-tumor mechanism of 13-methyltetradecanoic acid [J]. Progress in Veterinary Medicine, 2013, 34(9): 103-106. doi: 10.3969/j.issn.1007-5038.2013.09.025
    [20]
    TROTT O, OLSON A J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry,2010,31(2):455−461.
    [21]
    KUTZNER C, KNIEP C, CHERIAN A, et al. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design[J]. Journal of Chemical Information and Modeling,2022,62(7):1691−711. doi: 10.1021/acs.jcim.2c00044
    [22]
    WANG T, ZHANG P, LÜ H, et al. A natural dietary flavone myricetin as an α-hemolysin inhibitor for controlling Staphylococcus aureus infection[J]. Frontiers in Cellular and Infection Microbiology,2020,10:330. doi: 10.3389/fcimb.2020.00330
    [23]
    DONG J, ZHANG L, LIU Y, et al. Luteolin decreases the pathogenicity of Aeromonas hydrophila via inhibiting the activity of aerolysin[J]. Virulence,2021,12(1):165−76. doi: 10.1080/21505594.2020.1867455
    [24]
    XU L, LU G, ZHAN B, et al. Uncovering the efficacy and mechanisms of genkwa flos and bioactive ingredient genkwanin against L. monocytogenes infection[J]. Journal of Ethnopharmacology,2022,297:115571. doi: 10.1016/j.jep.2022.115571
    [25]
    WANG T, LIU B, ZHANG C, et al. Kaempferol-driven inhibition of listeriolysin O pore formation and inflammation suppresses Listeria monocytogenes infection[J]. Microbiology Spectrum,2022,10(4):e0181022. doi: 10.1128/spectrum.01810-22
    [26]
    TINGTING W, TIANQI F, XINYU W, et al. Amentoflavone attenuates Listeria monocytogenes pathogenicity through an LLO-dependent mechanism[J]. British Journal of Pharmacology,2022,179(14):3839−3858. doi: 10.1111/bph.15827
    [27]
    ZHANG J, LIU S, XIA L, et al. Verbascoside protects mice from Clostridial gas gangrene by inhibiting the activity of alpha toxin and perfringolysin O[J]. Front Microbiol,2020,11:1504. doi: 10.3389/fmicb.2020.01504
    [28]
    KUMARI R, KUMAR R, LYNN A. g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations[J]. Journal of Chemical Information and Modeling,2014,54(7):1951−1962. doi: 10.1021/ci500020m
    [29]
    VALDÉS-TRESANCO M S, VALDÉS-TRESANCO M E, VALIENTE P A, et al. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS[J]. Journal of Chemical Theory and Computation,2021,17(10):6281−6291. doi: 10.1021/acs.jctc.1c00645
    [30]
    GREENE D, QI R, NGUYEN R, et al. Heterogeneous dielectric implicit membrane model for the calculation of MMPBSA binding free energies[J]. Journal of Chemical Information and Modeling,2019,59(6):3041−3056. doi: 10.1021/acs.jcim.9b00363
    [31]
    LI G, SHEN X, WEI Y, et al. Quercetin reduces Streptococcus suis virulence by inhibiting suilysin activity and inflammation[J]. International Immunopharmacology,2019,69:71−78.
    [32]
    MENG F, TONG J, VÖTSCH D, et al. Viral coinfection replaces effects of suilysin on Streptococcus suis adherence to and invasion of respiratory epithelial cells grown under air-liquid interface conditions[J]. Infection and Immunity,2019,87(8):e00350.
    [33]
    BERCIER P, GOTTSCHALK M, GRENIER D. Streptococcus suis suilysin compromises the function of a porcine tracheal epithelial barrier model[J]. Microb Pathog,2020,139:103913.
    [34]
    VERHERSTRAETEN S, GOOSSENS E, VALGAEREN B, et al. Perfringolysin O: The underrated clostridium perfringens toxin?[J]. Toxins,2015,7(5):1702−1721. doi: 10.3390/toxins7051702
  • Cited by

    Periodical cited type(3)

    1. 王露,蔡雷,刘奇华,崔春. 花椒籽粕蛋白质的酶提工艺研究. 中国调味品. 2025(01): 206-209 .
    2. 陶静,翁霞,王喜珠. 甘谷伏椒挥发油成分及抗氧化活性研究. 中国调味品. 2024(04): 79-84 .
    3. 李宁,梁世岳,刘正群,张敏,郑梓,王雪梅,闫峻,穆淑琴. 花椒籽对蛋鸡生产性能、血清指标及蛋品质的影响. 饲料研究. 2024(18): 35-39 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (110) PDF downloads (13) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return