ZUO Yijin, YU Ziqi, SHEN Xueqing, et al. Recent Advance on the Structure-Activity Relationship in Antioxidant Peptides of Fish[J]. Science and Technology of Food Industry, 2023, 44(14): 419−429. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080200.
Citation: ZUO Yijin, YU Ziqi, SHEN Xueqing, et al. Recent Advance on the Structure-Activity Relationship in Antioxidant Peptides of Fish[J]. Science and Technology of Food Industry, 2023, 44(14): 419−429. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080200.

Recent Advance on the Structure-Activity Relationship in Antioxidant Peptides of Fish

More Information
  • Received Date: August 18, 2022
  • Available Online: May 17, 2023
  • Oxidation reaction in food is related to chronic diseases and rancidity, shortening the nutritional value and shelf life of products. In recent advances, the amino acid, sort order and spatial conformation of the antioxidant peptides is wildly reported. The structure-function relationship of antioxidant peptides has become the main factors on the determination of the antioxidant mechanisms. However, compared with the significant antioxidant effect of the peptides from land animals, such structure-function relationship of the antioxidant peptides in the fish, which is rich in proteins, is seldom reported. Therefore, antioxidant mechanisms of the peptides from fish, such as scavenging the intracellular reactive oxygen species in vivo, scavenging the free radicals in vitro and chelating the pro-oxidant metal ions is summarized in this review. The structure-function relationship between the primary structure and secondary structure on the antioxidant activity of fish peptides is provided. Moreover, the effects of non-polar amino acids, polar uncharged amino acids, polar positively charged amino acids and polar negatively charged amino acids are further reviewed. The review would provide a guide for the application of antioxidant peptides, and expand the food market for such products.
  • [1]
    张红玉, 李会珍, 张天伟, 等. 抗氧化肽作用机制研究进展[J]. 食品安全质量检测学报,2022,13(12):3981−3988. [ZHANG H Y, LI H Z, ZHANG T W, et al. Research progress on the mechanism of antioxidant peptides[J]. Journal of Food Safety & Quality,2022,13(12):3981−3988.

    ZHANG H Y, LI H Z, ZHANG T W, et al. Research progress on the mechanism of antioxidant peptides[J]. Journal of Food Safety & Quality, 2022, 13(12): 3981-3988.
    [2]
    WOJTUNIK-KULESZA K A, ONISZCZUK A, ONISZCZUK T, et al. The influence of common free radicals and antioxidants on development of Alzheimer's Disease[J]. Biomedicine & Pharmacotherapy,2016,78:39−49.
    [3]
    SAMPATH KUMAR N S, NAZEER R A, JAIGANESH R. Purification and identification of antioxidant peptides from the skin protein hydrolysate of two marine fishes, horse mackerel (Magalaspis cordyla) and croaker (Otolithes ruber)[J]. Amino Acids,2012,42(5):1641−1649. doi: 10.1007/s00726-011-0858-6
    [4]
    SAMPATH KUMAR N S, NAZEER R A, JAIGANESH R. Purification and biochemical characterization of antioxidant peptide from horse mackerel (Magalaspis cordyla) viscera protein[J]. Peptides,2011,32(7):1496−1501. doi: 10.1016/j.peptides.2011.05.020
    [5]
    MA Y, WU Y, LI L. Relationship between primary structure or spatial conformation and functional activity of antioxidant peptides from Pinctada fucata[J]. Food Chemistry,2018,264:108−117. doi: 10.1016/j.foodchem.2018.05.006
    [6]
    LÓPEZ-GARCÍA G, DUBLAN-GARCÍA O, ARIZMENDI-COTERO D, et al. Antioxidant and antimicrobial peptides derived from food proteins[J]. Molecules,2022,27(4):1343. doi: 10.3390/molecules27041343
    [7]
    王丹, 吴反修, 宋丹丹, 等. 2022中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2022.

    WANG D, WU B X, SONG D D, et al. 2022 China fisheries statistical yearbook[M]. Beijing: China Agricultural Publishing House, 2022.
    [8]
    蔡路昀, 马帅, 张宾, 等. 鱼类加工副产物的研究进展及应用前景[J]. 食品与发酵科技,2016,52(5):108−113. [CAI L Y, MA S, ZHANG B, et al. Recent advances and application prospects in the study of by-product of fish processing[J]. Food and Fermentation Science & Technology,2016,52(5):108−113.

    CAI L Y, MA S, ZHANG B, et al. Recent advances and application prospects in the study of by-product of fish processing[J]. Food and Fermentation Science & Technology, 2016, 52(5): 108-113.
    [9]
    NGO D, VO T, NGO D, et al. Biological activities and potential health benefits of bioactive peptides derived from marine organisms[J]. International Journal of Biological Macromolecules,2012,51(4):378−383. doi: 10.1016/j.ijbiomac.2012.06.001
    [10]
    CHEN Y, CHEN J, CHEN J, et al. Recent advances in seafood bioactive peptides and their potential for managing osteoporosis[J]. Critical Reviews in Food Science and Nutrition,2022,62(5):1187−1203. doi: 10.1080/10408398.2020.1836606
    [11]
    ASHAOLU T J. Antioxidative peptides derived from plants for human nutrition: Their production, mechanisms and applications[J]. European Food Research & Technology,2020,246(5):853−865.
    [12]
    LI Z, WANG J, ZHENG B, et al. Impact of combined ultrasound-microwave treatment on structural and functional properties of golden threadfin bream (Nemipterus virgatus) myofibrillar proteins and hydrolysates[J]. Ultrasonics Sonochemistry,2020,65:105063. doi: 10.1016/j.ultsonch.2020.105063
    [13]
    康永锋, 康俊霞, 吴文惠, 等. 超声波、微波对鲑鱼肽结构及抗氧化性的影响[J]. 食品工业科技,2013,34(5):66−71. [KANG Y F, KANG J X, WU W H, et al. Study on the effect and structure of ultrasonic and microwave on the antioxidant peptides from salmon[J]. Science and Technology of Food Industry,2013,34(5):66−71.

    KANG Y F, KANG J X, WU W H, et al. Study on the effect and structure of ultrasonic and microwave on the antioxidant peptides from salmon[J]. Science and Technology of Food Industry, 2013, 34(5): 66-71.
    [14]
    XING L, WANG Z, HAO Y, et al. Marine products as a promising resource of bioactive peptides: Update of extraction strategies and their physiological regulatory effects[J]. Journal of Agricultural and Food Chemistry,2022,70(10):3081−3095. doi: 10.1021/acs.jafc.1c07868
    [15]
    ZHANG Y, HE S, BONNEIL E, et al. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin:In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction[J]. Food Chemistry,2020,306:125581. doi: 10.1016/j.foodchem.2019.125581
    [16]
    WONG F C, XIAO J, ONG M G, et al. Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments[J]. Food Chemistry,2019,271:614−622. doi: 10.1016/j.foodchem.2018.07.206
    [17]
    GOPINATTH V, BALLINGER E, KWON J. Probing the structure-activity relationship of an antioxidant tuna-backbone derived peptide[J]. Current Developments in Nutrition,2020,4:398.
    [18]
    韦绪芹, 张建华, 占文婷, 等. 海洋生物源抗氧化活性肽的制备和构效关系[J]. 安徽农业科学,2015,43(25):15−20. [WEI X Q, ZHANG J H, ZHAN W T, et al. Preparation of marine antioxidant peptides and their structure-activity relationship[J]. Journal of Anhui Agricultural Sciences,2015,43(25):15−20.

    WEI X Q, ZHANG J H, ZHAN W T, et al. Preparation of marine antioxidant peptides and their structure-activity relationship[J]. Journal of Anhui Agricultural Sciences, 2015, 43(25): 15-20.
    [19]
    WU D, SUN N, DING J, et al. Evaluation and structure-activity relationship analysis of antioxidant shrimp peptides[J]. Food Function,2019,10(9):5605−5615. doi: 10.1039/C9FO01280J
    [20]
    頡宇, 张柏林, 石天玉, 等. 抗氧化肽延缓油脂氧化作用机制研究进展[J]. 中国油脂,2021,46(12):50−55. [JIE Y, ZHANG B L, SHI T Y, et al. Progress on action mechanism of antioxidant peptides delaying lipid oxidation[J]. China Oils and Fats,2021,46(12):50−55.

    JIE Y, ZHANG B L, SHI T Y, et al. Progress on action mechanism of antioxidant peptides delaying lipid oxidation[J]. China Oils and Fats, 2021, 46(12): 50-55.
    [21]
    ELIAS R J, KELLERBY S S, DECKER E A. Antioxidant activity of proteins and peptides[J]. Critical Reviews in Food Science and Nutrition,2008,48(5):430−441. doi: 10.1080/10408390701425615
    [22]
    赵翊君, 郑淋, 蔡勇建, 等. 鲈鱼(Lateolabrax japonicus)蛋白抗氧化肽的酶解制备及结构鉴定[J]. 现代食品科技,2018,34(6):168−173. [ZHAO Y J, ZHENG L, CAI Y J, et al. Enzymatic preparation and structural identification of antioxidant peptides from bass protein[J]. Modern Food Science and Technology,2018,34(6):168−173.

    ZHAO Y J, ZHENG L, CAI Y J, et al. Enzymatic preparation and structural identification of antioxidant peptides from bass protein[J]. Modern Food Science and Technology, 2018, 34(6): 168-173.
    [23]
    CHI C, WANG B, DENG Y, et al. Isolation and characterization of three antioxidant pentapeptides from protein hydrolysate of monkfish (Lophius litulon) muscle[J]. Food Research International,2014,55:222−228. doi: 10.1016/j.foodres.2013.11.018
    [24]
    FAN J, HE J, ZHUANG Y, et al. Purification and identification of antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) frame protein[J]. Molecules,2012,17(11):12836−12850. doi: 10.3390/molecules171112836
    [25]
    ESFANDI R, WALTERS M E, TSOPMO A. Antioxidant properties and potential mechanisms of hydrolyzed proteins and peptides from cereals[J]. Heliyon,2019,5(4):e1538.
    [26]
    JIANG H, TONG T, SUN J, et al. Purification and characterization of antioxidative peptides from round scad (Decapterus maruadsi) muscle protein hydrolysate[J]. Food Chemistry,2014,154:158−163. doi: 10.1016/j.foodchem.2013.12.074
    [27]
    ROBLET C, AMIOT J, LAVIGNE C, et al. Screening ofin vitro bioactivities of a soy protein hydrolysate separated by hollow fiber and spiral-wound ultrafiltration membranes[J]. Food Research International,2012,46(1):237−249. doi: 10.1016/j.foodres.2011.11.014
    [28]
    WU R, WU C, LIU D, et al. Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular protease[J]. Food Chemistry,2018,248:346−352. doi: 10.1016/j.foodchem.2017.12.035
    [29]
    AHN C, KIM J, JE J. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion[J]. Food Chemistry,2014,147:78−83. doi: 10.1016/j.foodchem.2013.09.136
    [30]
    BAMDAD F, AHMED S, CHEN L. Specifically designed peptide structures effectively suppressed oxidative reactions in chemical and cellular systems[J]. Journal of Functional Foods,2015,18:35−46. doi: 10.1016/j.jff.2015.06.055
    [31]
    XIAO Z, LIANG P, CHEN J, et al. A peptide YGDEY from tilapia gelatin hydrolysates inhibits UVB-mediated skin photoaging by regulating MMP-1 and MMP-9 expression in HaCaT cells[J]. Photochem Photobiol,2019,95(6):1424−1432. doi: 10.1111/php.13135
    [32]
    ZHANG Y, DUAN X, ZHUANG Y. Purification and characterization of novel antioxidant peptides from enzymatic hydrolysates of tilapia (Oreochromis niloticus) skin gelatin[J]. Peptides,2012,38(1):13−21. doi: 10.1016/j.peptides.2012.08.014
    [33]
    TKACZEWSKA J, BUKOWSKI M, MAK P. Identification of antioxidant peptides in enzymatic hydrolysates of carp (Cyprinus carpio) skin gelatin[J]. Molecules,2019,24(1):97.
    [34]
    CAI L, WU X, ZHANG Y, et al. Purification and characterization of three antioxidant peptides from protein hydrolysate of grass carp (Ctenopharyngodon idella) skin[J]. Journal of functional foods,2015,16:234−242. doi: 10.1016/j.jff.2015.04.042
    [35]
    TANG X, HE Z, DAI Y, et al. Peptide fractionation and free radical scavenging activity of zein hydrolysate[J]. Journal of Agricultural and Food Chemistry,2010,58(1):587−593. doi: 10.1021/jf9028656
    [36]
    SABEENA F K, ANDERSEN L L, OTTE J, et al. Antioxidant activity of cod (Gadus morhua) protein hydrolysates: Fractionation and characterisation of peptide fractions[J]. Food Chemistry,2016,204:409−419. doi: 10.1016/j.foodchem.2016.02.145
    [37]
    AGRAWAL H, JOSHI R, GUPTA M. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate[J]. Food Research International,2019,120:697−707. doi: 10.1016/j.foodres.2018.11.028
    [38]
    JI Z, FENG R, MAO J. Separation and identification of antioxidant peptides from foxtail millet (Setaria italica) prolamins enzymatic hydrolysate[J]. Cereal Chemistry,2019,96(6):981−993. doi: 10.1002/cche.10202
    [39]
    SHAZLY A B, HE Z, EL-AZIZ M A, et al. Fractionation and identification of novel antioxidant peptides from buffalo and bovine casein hydrolysates[J]. Food Chemistry,2017,232:753−762. doi: 10.1016/j.foodchem.2017.04.071
    [40]
    CHEN W, HONG Y, JIA Z, et al. Purification and identification of antioxidant peptides from hydrolysates of large yellow croaker (Pseudosciaena crocea) scales[J]. Transactions of the ASABE,2020,63(2):289−294. doi: 10.13031/trans.13693
    [41]
    WU R, HUANG J, HUAN R, et al. New insights into the structure-activity relationships of antioxidative peptide PMRGGGGYHY[J]. Food Chemistry,2021,337:127678. doi: 10.1016/j.foodchem.2020.127678
    [42]
    YANG X, ZHANG L, DING D, et al. Preparation, identification, and activity evaluation of eight antioxidant peptides from protein hydrolysate of hairtail (Trichiurus japonicas) muscle[J]. Marine Drugs, 2019, 17(1): 23.
    [43]
    瞿瑜杉, 吉宏武, 宋文奎, 等. 扁舵鲣抗氧化肽分离纯化及结构鉴定[J]. 广东海洋大学学报,2022,42(1):113−119. [QU Y S, JI H W, SONG W K, et al. Isolation, purification and structural identification of antioxidant peptides from Auxis thazard[J]. Journal of Guangdong Ocean University,2022,42(1):113−119.

    QU Y S, JI H W, SONG W K, et al. Isolation, purification and structural identification of antioxidant peptides from Auxis thazard [J]. Journal of Guangdong Ocean University, 2022, 42(1): 113-119.
    [44]
    PAN X, ZHAO Y, HU F, et al. Preparation and identification of antioxidant peptides from protein hydrolysate of skate ( Raja porosa) cartilage[J]. Journal of Functional Foods,2016,25:220−230. doi: 10.1016/j.jff.2016.06.008
    [45]
    LI X, CHI C, LI L, et al. Purification and identification of antioxidant peptides from protein hydrolysate of scalloped hammerhead (Sphyrna lewini) cartilage[J]. Marine Drugs,2017,15(3):61. doi: 10.3390/md15030061
    [46]
    颜阿娜, 陈声漾, 陈旭, 等. 一种新型抗氧化五肽的纯化、鉴定与表征[J]. 食品科学,2019,40(10):43−49. [YAN A N, CHEN S Y, CHEN X, et al. Purication, identication and characterization of a novel antioxidant pentapeptide[J]. Food Science,2019,40(10):43−49.

    YAN A N, CHEN S Y, CHEN X, et al. Purication, identication and characterization of a novel antioxidant pentapeptide[J]. Food Science, 2019, 40(10): 43-49.
    [47]
    CHEN H, WANG S, ZHOU A, et al. A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans[J]. Journal of Functional Foods,2020,68:103907. doi: 10.1016/j.jff.2020.103907
    [48]
    SUDHAKAR S, NAZEER R A. Structural characterization of an Indian squid antioxidant peptide and its protective effect against cellular reactive oxygen species[J]. Journal of Functional Foods,2015,14:502−512. doi: 10.1016/j.jff.2015.02.028
    [49]
    HE Y, PAN X, CHI C, et al. Ten new pentapeptides from protein hydrolysate of miiuy croaker (Miichthys miiuy) muscle: Preparation, identification, and antioxidant activity evaluation[J]. LWT,2019,105:1−8. doi: 10.1016/j.lwt.2019.01.054
    [50]
    SARMADI B H, ISMAIL A. Antioxidative peptides from food proteins: A review[J]. Peptides,2010,31(10):1949−1956. doi: 10.1016/j.peptides.2010.06.020
    [51]
    郑淋. 抗氧化肽的构效关系及定向制备的研究[D]. 广州: 华南理工大学, 2015.

    ZHENG L. Study on the structure-activity relationship and targeted preparation of antioxidant peptides[D]. Guangzhou: South China University of Technology, 2015.
    [52]
    CHEN H, MURAMOTO K, YAMAUCHI F, et al. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J]. Journal of Agricultural and Food Chemistry,1996,44(9):2619−2623. doi: 10.1021/jf950833m
    [53]
    JANG H L, LICEAGA A M, YOON K Y. Purification, characterisation and stability of an antioxidant peptide derived from sandfish(Arctoscopus japonicus ) protein hydrolysates[J]. Journal of Functional Foods,2016,20:433−442. doi: 10.1016/j.jff.2015.11.020
    [54]
    武翠玲, 吴日帮, 刘丹, 等. 鲮鱼皮胶原肽的制备及其抗氧化活性的检测[J]. 生物工程学报,2016,32(12):1727−1734. [WU C L, WU R B, LIU D, et al. Preparation and antioxidant activity detection of collagen peptide from Cirrhinus molitorella skin[J]. Chinese Journal of Biotechnology,2016,32(12):1727−1734.

    WU C L, WU R B, LIU D, et al. Preparation and antioxidant activity detection of collagen peptide from Cirrhinus molitorella skin[J]. Chinese Journal of Biotechnology, 2016, 32(12): 1727-1734.
    [55]
    SAE-LEAW T, KARNJANAPRATUM S, O'CALLAGHAN Y C, et al. Purification and identification of antioxidant peptides from gelatin hydrolysate of seabass skin[J]. Journal of Food Biochemistry,2017,41(3):e12350. doi: 10.1111/jfbc.12350
    [56]
    WIRIYAPHAN C, CHITSOMBOON B, ROYTRAKUL S, et al. Isolation and identification of antioxidative peptides from hydrolysate of threadfin bream surimi processing byproduct[J]. Journal of Functional Foods,2013,5(4):1654−1664. doi: 10.1016/j.jff.2013.07.009
    [57]
    GUI M, GAO L, RAO L, et al. Bioactive peptides identified from enzymatic hydrolysates of sturgeon skin[J]. Journal of the Science of Food and Agriculture,2022,102(5):1948−1957. doi: 10.1002/jsfa.11532
    [58]
    董丽莎, 李妍妍, 张红燕, 等. 黑线鳕鱼皮胶原蛋白胰蛋白酶酶解多肽对UVB诱导HaCaT光损伤的抑制作用[J]. 食品科学,2018,39(10):185−192. [DONG L S, LI Y Y, ZHANG H Y, et al. Inhibitory effects of peptides derived from tryptic hydrolysate of skin collagen from Melanogrammus aeglefinus on UVB-induced photodamage in HaCaT cells[J]. Journal of Nuclear Agricultural Sciences,2018,39(10):185−192.

    DONG L S, LI Y Y, ZHANG H Y, et al. Inhibitory effects of peptides derived from tryptic hydrolysate of skin collagen from Melanogrammus aeglefinus on UVB-induced photodamage in HaCaT cells[J]. Journal of Nuclear Agricultural Sciences, 2018, 39(10): 185-192.
    [59]
    NGUYEN V, QIAN Z, LEE B, et al. Fucoxanthin derivatives from Sargassum siliquastrum inhibit matrix metalloproteinases by suppressing NF-κB and MAPKs in human fibrosarcoma cells[J]. ALGAE,2014,29(4):355−366. doi: 10.4490/algae.2014.29.4.355
    [60]
    PAN X, WANG Y, LI L, et al. Four antioxidant peptides from protein hydrolysate of red stingray (Dasyatis akajei) cartilages: Isolation, identification, and in vitro activity evaluation[J]. Marine Drugs,2019,17(5):263. doi: 10.3390/md17050263
    [61]
    GUO Y, MICHAEL N, FONSECA MADRIGAL J, et al. Protein hydrolysate from Pterygoplichthys disjunctivus, armoured catfish, with high antioxidant activity[J]. Molecules,2019,24(8):1628. doi: 10.3390/molecules24081628
    [62]
    ZHANG L, ZHAO G, ZHAO Y, et al. Identification and active evaluation of antioxidant peptides from protein hydrolysates of skipjack tuna (Katsuwonus pelamis) head[J]. Antioxidants,2019,8(8):318. doi: 10.3390/antiox8080318
    [63]
    WANG K, HAN L, HONG H, et al. Purification and identification of novel antioxidant peptides from silver carp muscle hydrolysate after simulated gastrointestinal digestion and transepithelial transport[J]. Food Chemistry,2021,342:128275. doi: 10.1016/j.foodchem.2020.128275
    [64]
    ZHANG K, LI J, HOU H, et al. Purification and characterization of a novel calcium-biding decapeptide from Pacific cod (Gadus Macrocephalus) bone: Molecular properties and calcium chelating modes[J]. Journal of Functional Foods,2019,52:670−679. doi: 10.1016/j.jff.2018.11.042
    [65]
    郭洪辉, 张怡评, 洪专, 等. 河豚鱼皮胶原寡肽螯合锌的体内体外抗氧化活性研究[J]. 食品工业科技,2021,42(5):66−71. [GUO H H, ZHANG Y P, HONG Z, et al. Industry, study on in vivo and in vitro antioxidant activity of collagen oligopeptide chelated zinc from puffer skin[J]. Science and Technology of Food,2021,42(5):66−71.

    GUO H H, ZHANG Y P, HONG Z, et al. Industry, study on in vivo and in vitro antioxidant activity of collagen oligopeptide chelated zinc from puffer skin [J]. Science and Technology of Food, 2021, 42(5): 66-71.
    [66]
    遆光慧, 布冠好. 多肽螯合金属离子产物的研究进展[J]. 食品安全质量检测学报,2022,13(5):1575−1581. [TI G H, BU G H. Research progress of peptide chelating metal ion products[J]. Journal of Food Safety & Quality,2022,13(5):1575−1581.

    TI G H, BU G H. Research progress of peptide chelating metal ion products[J]. Journal of Food Safety & Quality, 2022, 13(5): 1575-1581.
    [67]
    CHEN M, JI H, ZHANG Z, et al. A novel calcium-chelating peptide purified from Auxis thazard protien hydrolysate and its binding properties with calcium[J]. Journal of Functional Foods,2019,60:103447. doi: 10.1016/j.jff.2019.103447
    [68]
    WALTERS M E, ESFANDI R, TSOPMO A. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption[J]. Foods,2018,7(10):172. doi: 10.3390/foods7100172
    [69]
    WU W, YANG Y, SUN N, et al. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability[J]. Food Research International,2020,131:108976. doi: 10.1016/j.foodres.2020.108976
    [70]
    LIN S, HU X, LI L, et al. Preparation, purification and identification of iron-chelating peptides derived from tilapia (Oreochromis niloticus) skin collagen and characterization of the peptide-iron complexes[J]. Food Science & Technology,2021,149:111796.
    [71]
    MENDIS E, RAJAPAKSE N, BYUN H, et al. Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects[J]. Life Sciences,2005,77(17):2166−2178. doi: 10.1016/j.lfs.2005.03.016
    [72]
    BUDSEEKOAD S, YUPANQUI C T, SIRINUPONG N, et al. Structural and functional characterization of calcium and iron-binding peptides from mung bean protein hydrolysate[J]. Journal of Functional Foods,2018,49:333−341. doi: 10.1016/j.jff.2018.07.041
    [73]
    STORCKSDIECK S, BONSMANN G, HURRELL R F. Iron-binding properties, amino acid composition, and structure of muscle tissue peptides from in vitro digestion of different meat sources[J]. Journal of Food Science,2007,72(1):S19−S29. doi: 10.1111/j.1750-3841.2006.00229.x
    [74]
    MUHR L, PONTVIANNE S, SELMECZI K, et al. Chromatographic separation simulation of metal-chelating peptides from surface plasmon resonance binding parameters[J]. Journal of Separation Science,2020,43(11):2031−2041. doi: 10.1002/jssc.201900882
    [75]
    HERNÁNDEZ-LEDESMA B, DÁVALOS A, BARTOLOMÉ B, et al. Preparation of antioxidant enzymatic hydrolysates from α-lactalbumin and β-lactoglobulin. Identification of active peptides by HPLC-MS/MS[J]. Journal of Agricultural and Food Chemistry,2005,53(3):588−593. doi: 10.1021/jf048626m
    [76]
    贺晓丽, 秦松, 李文军, 等. 海洋生物功能肽构效关系研究进展[J]. 海洋科学,2020,44(12):144−152. [HE X L, QIN S, LI W J, et al. Research progress on structure-activity relationship of marine biological functional peptides[J]. Marine Sciences,2020,44(12):144−152.

    HE X L, QIN S, LI W J, et al. Research progress on structure-activity relationship of marine biological functional peptides[J]. Marine Sciences, 2020, 44(12): 144-152.
    [77]
    ZHANG X, DAI Z, ZHANG Y, et al. Structural characteristics and stability of salmon skin protein hydrolysates obtained with different proteases[J]. LWT,2022,153:112460. doi: 10.1016/j.lwt.2021.112460
    [78]
    ZHANG J, LI M, ZHANG G, et al. Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms[J]. Food Chemistry,2021,337:127921. doi: 10.1016/j.foodchem.2020.127921
    [79]
    曹振海, 乐彩虹, 陶宁萍, 等. 体外模拟消化对暗纹东方鲀鱼皮胶原蛋白肽结构特征及抗氧化活性的影响[J]. 食品与发酵工业,2021,47(23):61−69. [CAO Z H, LE C H, TAO N P, et al. Effects of structural characteristics and antioxidant activity of collagen bioactive peptides from Takifugu obscurus skin during simulated gastrointestinal digestion[J]. Food and Fermentation Industries,2021,47(23):61−69.

    CAO Z H, LE C H, TAO N P, et al. Effects of structural characteristics and antioxidant activity of collagen bioactive peptides from Takifugu obscurus skin during simulated gastrointestinal digestion[J]. Food and Fermentation Industries, 2021, 47(23): 61-69.
    [80]
    YANG R, WANG J, LIN S, et al. In vitro antioxidant activities of the novel pentapeptides Ser-His-Glu-Cys-Asn and Leu-Pro-Phe-Ala-Met and the relationship between activity and peptide secondary structure[J]. Journal of the Science of Food and Agriculture,2017,97(6):1945−1952. doi: 10.1002/jsfa.8000
    [81]
    MA C, SUN N, ZHANG S, et al. A new dual-peptide strategy for enhancing antioxidant activity and exploring the enhancement mechanism[J]. Food & Function,2019,1(11):7533−7543.
    [82]
    冯晓文, 赵晓涵, 潘骁琦, 等. 体外模拟消化对海洋鱼骨胶原低聚肽结构和抗氧化活性的影响[J]. 食品与发酵工业,2022,48(5):173−179. [FENG X W, ZHAO X H, PAN X Q, et al. The effect of simulated digestionin vitro on structure and antioxidant activity of marine fish bone collagen oligopeptides[J]. Food and Fermentation Industries,2022,48(5):173−179.

    FENG X W, ZHAO X H, PAN X Q, et al. The effect of simulated digestion in vitro on structure and antioxidant activity of marine fish bone collagen oligopeptides[J]. Food and Fermentation Industries, 2022, 48(5): 173-179.
    [83]
    YANG R, LI X, LIN S, et al. Identification of novel peptides from 3 to 10 kDa pine nut (Pinus koraiensis) meal protein, with an exploration of the relationship between their antioxidant activities and secondary structure[J]. Food Chemistry,2017,219:311−320. doi: 10.1016/j.foodchem.2016.09.163
    [84]
    王莹, 邢杰, 李幸芳, 等. 基于FTIR和1H-NMR方法分析高压脉冲电场技术对抗氧化肽KWFH的结构影响[J]. 食品科学,2017,38(1):116−120. [WANG Y, XING J, LI X F, et al. Using FTIR and 1H-NMR to explore the structure of antioxidant peptide KWFH treated by pulsed electric field(PEF)[J]. Food Science,2017,38(1):116−120.

    WANG Y, XING J, LI X F, et al. Using FTIR and 1H-NMR to Explore the Structure of Antioxidant Peptide KWFH Treated by Pulsed Electric Field(PEF)[J]. Food Science, 2017, 38(1): 116-120.
    [85]
    NGO D, QIAN Z, RYU B, et al. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems[J]. Journal of Functional Foods,2010,2(2):107−117. doi: 10.1016/j.jff.2010.02.001
    [86]
    BAMDAD F, CHEN L. Antioxidant capacities of fractionated barley hordein hydrolysates in relation to peptide structures[J]. Molecular Nutrition & Food Research,2013,57(3):493−503.
    [87]
    LIU H, LIANG J, XIAO G, et al. Active sites of peptides Asp-Asp-Asp-Tyr and Asp-Tyr-Asp-Asp protect against cellular oxidative stress[J]. Food Chemistry,2022,366:130626. doi: 10.1016/j.foodchem.2021.130626
    [88]
    NAJAFIAN L, BABJI A S. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam)[J]. Journal of Food Measurement and Characterization,2018,12(3):2174−2183. doi: 10.1007/s11694-018-9833-1
    [89]
    SONG R, WEI R, RUAN G, et al. Isolation and identification of antioxidative peptides from peptic hydrolysates of half-fin anchovy (Setipinna taty)[J]. LWT-Food Science and Technology,2015,60(1):221−229. doi: 10.1016/j.lwt.2014.06.043
    [90]
    HALIM N R A, AZLAN A, YUSOF H M, et al. Antioxidant and anticancer activities of enzymatic eel (Monopterus sp) protein hydrolysate as influenced by different molecular weight[J]. Biocatalysis and Agricultural Biotechnology,2018,16:10−16. doi: 10.1016/j.bcab.2018.06.006
    [91]
    CHI C, WANG B, HU F, et al. Purification and identification of three novel antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) skin[J]. Food Research International,2015,73:124−129. doi: 10.1016/j.foodres.2014.08.038
    [92]
    ZHAO W, LUO Q, PAN X, et al. Preparation, identification, and activity evaluation of ten antioxidant peptides from protein hydrolysate of swim bladders of miiuy croaker (Miichthys miiuy)[J]. Journal of Functional Foods,2018,47:503−511. doi: 10.1016/j.jff.2018.06.014
    [93]
    WANG B, LI Z, CHI C, et al. Preparation and evaluation of antioxidant peptides from ethanol-soluble proteins hydrolysate of Sphyrna lewini muscle[J]. Peptides,2012,36(2):240−250. doi: 10.1016/j.peptides.2012.05.013
    [94]
    SAIDI S, SAOUDI M, BEN A R. Valorisation of tuna processing waste biomass: Isolation, purification and characterisation of four novel antioxidant peptides from tuna by-product hydrolysate[J]. Environmental Science and Pollution Research,2018,25(18):17383−17392. doi: 10.1007/s11356-018-1809-5
    [95]
    王锐, 张迪雅, 李晔, 等. 金枪鱼暗色肉酶解优势肽鉴定及其体外抗氧化和血管紧张素转换酶抑制活性分析[J]. 食品科学,2020,41(23):91−99. [WANG R, ZHANG D Y, LI Y, et al. Identification of dominant peptides from hydrolyzed tuna dark muscle and their antioxidant and angiotensin-converting enzyme inhibitory activities[J]. Food Science,2020,41(23):91−99.

    WANG R, ZHANG D Y, LI Y, et al. Identification of dominant peptides from hydrolyzed tuna dark muscle and their antioxidant and angiotensin-converting enzyme inhibitory activities[J]. Food Science, 2020, 41(23): 91-99.
    [96]
    LEE J K, BYUN H. Characterization of antioxidative peptide purified from black eelpout (Lycodes diapterus) hydrolysate[J]. Fisheries and Aquatic Sciences,2019,22:22. doi: 10.1186/s41240-019-0137-0
    [97]
    YANG Q, CAI X, YAN A, et al. A specific antioxidant peptide: Its properties in controlling oxidation and possible action mechanism[J]. Food Chemistry,2020,327:126984. doi: 10.1016/j.foodchem.2020.126984
  • Cited by

    Periodical cited type(7)

    1. 张智恒,赵维武,孙海誉,孙秋慧,郭山,代舒同. ε-聚赖氨酸复配保鲜剂对蛋糕保鲜效果. 食品工业. 2024(03): 100-105 .
    2. 翟彩宁,陈佩,黄镜源,王玮琨. 迷迭香活性成分的提取工艺、功能及其在动物生产中的应用. 饲料研究. 2024(14): 172-176 .
    3. 唐源,刘梦聪,刘燕,李富华,赵吉春,明建. 香辛料提取物改善水产品蛋白质过氧化研究进展. 食品科学. 2024(20): 290-298 .
    4. 马丹凤,朱梓康,王雨旺,杨金铭,顾诗雨,黄志炜. 迷迭香在植物生产中的应用研究进展. 黑龙江农业科学. 2023(07): 113-121 .
    5. 库文娟,杨欢,余丽,徐玉. 从迷迭香中提取天然抗氧化剂的工艺研究进展. 食品工业. 2023(12): 159-161 .
    6. 蒋治国,何莹,林昌华,苏丽娟,黄海权,蒋家霞. 迷迭香提取物降低仔猪断奶氧化应激的机制研究. 饲料研究. 2023(22): 21-25 .
    7. 钟雯雯,杨绍坤,李梓萌,段晓梅. 迷迭香精油GC-MS分析及其体外药理活性研究. 广州化工. 2023(21): 80-84 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (270) PDF downloads (27) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return