TANG Lihua, ZHANG Yao, MA Xuemei, et al. Analysis of Differentially Expressed Metabolites of Fresh and Dried Wolfberry Fruit in Ningxia Based on UPLC-QE-Orbitrap-MS[J]. Science and Technology of Food Industry, 2023, 44(8): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080184.
Citation: TANG Lihua, ZHANG Yao, MA Xuemei, et al. Analysis of Differentially Expressed Metabolites of Fresh and Dried Wolfberry Fruit in Ningxia Based on UPLC-QE-Orbitrap-MS[J]. Science and Technology of Food Industry, 2023, 44(8): 9−16. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080184.

Analysis of Differentially Expressed Metabolites of Fresh and Dried Wolfberry Fruit in Ningxia Based on UPLC-QE-Orbitrap-MS

More Information
  • Received Date: August 17, 2022
  • Available Online: February 15, 2023
  • The project studied the differences of dried and fresh wolfberry fruit in Ningxia region. Using non-targeted metabolomics analysed the differential metabolites of wolfberry fruit. The observed variables were determined using ultra-high performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry (UPLC-QE-Orbitrap-MS). Differential metabolites were screened out by mathematical statistical methods (principal component analysis (PCA), partial least squares analysis (PLS-DA), univariate statistical analysis, cluster analysis, volcano plot) to identify and analyse all metabolites. The results showed that 35 different metabolites were identified in the fresh and dried wolfberry fruit. The expression of organic acids, amino acids and flavonoids was up-regulated, while the expression of nucleotides, phenolic acids and coumarin compounds was down-regulated. This study revealed the characteristic compounds of fresh and dried wolfberry fruit in Ningxia. The research would provide a theoretical basis for the material basis of different wolfberry fruits.
  • [1]
    胡明珍, 刘慧燕, 潘琳, 等. 基于非靶向代谢组学分析副干酪乳杆菌发酵枸杞汁各阶段代谢差异[J]. 食品科学,2022,43(8):142−149. [HU M Z, LIU H Y, PAN L, et al. Non-targeted metabolomics analysis of differential metabolite profiles of Goji juice fermented by Lactobacillus[J]. Food Science,2022,43(8):142−149.
    [2]
    B KULCZYŃSKI, ANNA GRAMZA-MICHAŁOWSKA. Goji berry (Lycium barbarum): Composition and health effects-a review[J]. Polish Journal of Food and Nutrition Sciences, 2016, 66(2).
    [3]
    JELENA J VULIĆ, JASNA M ČANADANOVIĆ-BRUNET, GORDANA S ĆETKOVIĆ, et al. Bioactive compounds and antioxidant properties of Goji fruits (Lycium barbarum L.)[J]. Cultivated in Serbia, Journal of the American College of Nutrition,2016,35(8):692−698. doi: 10.1080/07315724.2016.1142404
    [4]
    VIDOVIĆ B B, MILINČIĆD D, MARČETIĆ M D, et al. Health benefits and applications of Goji berries in functional food products development: A review[J]. Antioxidants,2022,11:248. doi: 10.3390/antiox11020248
    [5]
    DONNO D, BECCARO G L, MELLANO M G, et al. Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation[J]. Funct Foods,2014,18:1070−1085.
    [6]
    程晓燕, 葛向珍, 薛华丽, 等. 枸杞鲜果贮藏期间质量损失率与时间的拟合及与质构参数的关系[J]. 食品科学,2020,41(17):261−266. [CHENG X Y, GE X Z, XUE H L, et al. Relationship between mass loss percentage of fresh Goji berries and either storage time or texture parameters[J]. Food Science,2020,41(17):261−266. doi: 10.7506/spkx1002-6630-20200410-138
    [7]
    王海, 高月, 王颉, 等. 适宜干燥方法提高干制枸杞品质[J]. 农业工程学报,2015,31(21):271−276. [WANG H, GAO Y, WANG J, et al. Optimal drying method improving quality of Lycium barbarum L[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2015,31(21):271−276. doi: 10.11975/j.issn.1002-6819.2015.21.036
    [8]
    龚意辉, 周桂花, 彭淑君, 等. 基于非靶向代谢组学的柑橘果皮褐斑病发生过程中代谢差异分析[J]. 中国食品学报,2022,22(8):316−324. [GONG Y H, ZHOU G H, PENG S J, et al. Differential analysis of the metabolites on citrus pericarp brownspot based on untargeted metabolomics[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(8):316−324. doi: 10.16429/j.1009-7848.2022.08.034
    [9]
    张丽君, 王丹, 王育娇, 等. 基于气相色谱-质谱联用技术的代谢组学在农产品产地溯源中的应用[J]. 食品安全质量检测学报,2021,12(6):2197−2203. [ZHANG L J, WANG D, WANG Y J, et al. Application of metabolomics based on gas chromatography-mass spectrometry technology in the origin traceability of agricultural products[J]. Journal of Food Safety and Quality,2021,12(6):2197−2203. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.06.022
    [10]
    QIN X Y, YIN Y, ZHAO J H, et al. Correction to: Metabolomic and transcriptomic analysis of Lycium Chinese and L. ruthenicum under salinity stress[J]. BMC Plant Biology,2022,22(1):8. doi: 10.1186/s12870-021-03375-x
    [11]
    SPANO MATTIA, MACCELLI ALESSANDRO, DI MATTEO GIACOMO, et al. Metabolomic profiling of fresh Goji (Lycium barbarum L.) berries from two cultivars grown in central Italy: A multi-methodological approach[J]. Molecules,2021,26(17):5412. doi: 10.3390/molecules26175412
    [12]
    李丽, 冯华峰, 周淳. 植物乳杆菌发酵黑果枸杞的代谢组学研究[J]. 化学试剂,2022,44(8):1088−1096. [LI L, FENG H F, ZHOU C. Metabolomics study of Lactobacillus plantarum fermented Lycium ruthenicum Murr[J]. Chemical Reagents,2022,44(8):1088−1096. doi: 10.13822/j.cnki.hxsj.2022.0217
    [13]
    李泽娜, 刘畅, 吴乾峰, 等. 基于超高效液相色谱-串联质谱的不同加工干燥方法下的杜仲代谢组学分析[J]. 分析测试学报,2022,7(41):98−106. [LI Z N, LIU C, WU Q F, et al. Metabolomics analysis of eucommiae cortex obtained by different processing and drying methods based on ultra performance liquid chromatography-tandem mass spectrometry[J]. Fenxi Ceshi Xuebao (Journal of Instrumental Analysis),2022,7(41):98−106. doi: 10.19969/j.fxcsxb.21092306
    [14]
    沈葹, 杨奕, 王晶波, 等. 基于超高效液相色谱-四极杆飞行时间质谱的非靶向代谢组学用于不同来源单花蜜的差异分析[J]. 色谱,2021,39(3):291−300. [SHEN S, YANG Y, WANG J B, et al. Analysis of differences between unifloral honeys from different botanical origins based on non-targeted metabolomics by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography,2021,39(3):291−300. doi: 10.3724/SP.J.1123.2020.06029
    [15]
    张雷, 张璐璐, 孙洪蕊, 等. 基于非靶向代谢组学的焙焦油莎豆粕精酿啤酒主发酵期代谢物变化研究[J]. 中国酿造,2022,41(5):89−95. [ZHANG L, ZHANG L L, SUN H R, et al. Metabolite changes of craft beer of baked Cyperus esculentus meal during main fermentation based on untargeted metabolomics[J]. China Brewing,2022,41(5):89−95. doi: 10.11882/j.issn.0254-5071.2022.05.016
    [16]
    李峰庆, 王福, 杨放晴, 等. 利用UHPLC-ESI-MS/MS法测定川陈皮与其混伪品中的黄酮类成分[J]. 天然产物研究与开发,2020,32:1324−1330. [LI F Q, WANG F, YANG F Q, et al. Analysis of flavonoids in Chuan citrus reticulata pericarpium and its adulterant using UHPLC-ESI-MS/MS[J]. Nat Prod Res Dev,2020,32:1324−1330. doi: 10.16333/j.1001-6880.2020.8.007
    [17]
    张舒, 王长远, 冯玉超, 等. 气相色谱-质谱联用代谢组学技术分析不同产地稻米代谢物[J]. 食品科学,2021,42(8):206−213. [ZHANG S, WANG C Y, FENG Y C, et al. Analysis of metabolites in rice produced in different regions by GC-MS-based metabonomics[J]. Food Science,2021,42(8):206−213. doi: 10.7506/spkx1002-6630-20200409-128
    [18]
    金文刚, 赵萍, 刘俊霞, 等. 基于GC-MS代谢组学分析大鲵肉冷藏过程中肌肉代谢产物差异[J]. 食品科学,2022,43(24):192−201. [JIN W G, ZHAO P, LIU J X, et al. Analysis of muscle metabolites of giant salamander (Andrias davidianus) meat during cold storage based on gas chromatography-mass spectrometry metabolomics[J]. Food Science,2022,43(24):192−201. doi: 10.7506/spkx1002-6630-20220218-140
    [19]
    吴雅琼, 张春红, 杨海燕, 等. 基于代谢组学分析黑莓、黑树莓果实代谢物的差异[J]. 江苏农业学报,2022,38(3):790−797. [WU Y Q, ZHANG C H, YANG H Y, et al. Metabolomics analysis of differentially expressed metabolites in blackberry and black raspberry fruits[J]. Jiangsu J of Agr Sci,2022,38(3):790−797. doi: 10.3969/j.issn.1000-4440.2022.03.026
    [20]
    姚沛琳, 刘梦茹, 杨澳, 等. 基于非靶向代谢组学的蓝莓酵素和沙棘酵素代谢产物特征比较[J]. 食品工业科技,2022,43(19):160−166. [YAO P L, LIU M R, YANG A, et al. Comparison of metabolite characteristics of blueberry Jiaosu and sea-buckthorn Jiaosu based on non-targeted metabolomics approach[J]. Science and Technology of Food Industry,2022,43(19):160−166. doi: 10.13386/j.issn1002-0306.2021120282
    [21]
    YANG Y, DONG G Z, WANG Z, et al. Rumen and plasma metabolomics profiling by UHPLC-QTOF/MS revealed metabolic alterations associated with a high-corn diet in beef steers[J]. PLoS One,2018,13(11):e0208031. doi: 10.1371/journal.pone.0208031
    [22]
    周婷, 田晓菊, 周桂珍, 等. 基于UPLC-LTQ-Orbitrap-MS的代谢组学方法分析枸杞酒发酵前后酚类物质的变化[J/OL]. 食品与发酵工业: 1−9[2023-02-08]. DOI: 10.13995/j.cnki.11-1802/ts.030506.

    ZHOU T, TIAN X J, ZHOU G Z, et al. Changes of phenolic substances in Lycium barbarum wine before and after the fermentation analyzed by UPLC-LTQ-Orbitrap-MS[J/OL]. Food and Fermentation Industries: 1−9[2023-02-08]. DOI: 10.13995/j.cnki.11-1802/ts.030506.
    [23]
    杨青青, 王智荣, 彭林, 等. 基于代谢组学分析两种产地青花椒中非挥发性成分的差异[J]. 食品与发酵工业,2021,47(12):216−223. [YANG Q Q, WANG Z R, PENG L, et al. Metabolomic analysis of non-volatile chemical components in Zanthoxylum schinifolium Sieb. et Zucc. from two origins[J]. Food and Fermentation Industries,2021,47(12):216−223. doi: 10.13995/j.cnki.11-1802/ts.026480
    [24]
    王兰兰, 宋晓卉, 杨笛, 等. 环境条件对植物有机酸影响研究进展[J]. 沈阳师范大学学报(自然科学版),2019,37(3):236−239. [WANG L L, SONG X H, YANG D, et al. Progress of the effects of environmental conditions on organic acids in plants[J]. Journal of Shenyang Normal University (Natural Science Edition),2019,37(3):236−239. doi: 10.3969/j.issn.1673-5862.2019.03.010
    [25]
    梁叶星, 张玲, 高飞虎, 等. 重庆水豆豉发酵过程中NaCl、还原糖和氨基酸变化与滋味的形成[J]. 食品与发酵工业,2019,45(18):27−34. [LIANG Y X, ZHANG L, GAO F H, et al. Changes in NaCl, reducing sugar and amino acids and formation of tastes in Chongqing Shuidouchi during fermentation[J]. Food and Fermentation Industries,2019,45(18):27−34. doi: 10.13995/j.cnki.11-1802/ts.021057
    [26]
    刘少静, 刘萌, 郭秀英, 等. 枸杞润肤霜中两种酚酸类成分的高效液相色谱检测及质谱确证[J]. 分析科学学报,2016,32(1):133−136. [LIU S J, LIU M, GUO X Y, et al. Simultaneous determination of two phenolic acids components in wolfberry cream by high perfor mance liquid chromatography and verification by liquid chromatography-tandem mass spectrometry[J]. Journal of Analytical Science,2016,32(1):133−136. doi: 10.13526/j.issn.1006-6144.2016.01.027
    [27]
    ZU M H, SONG H L, ZHANG J B, et al. Lycium barbarum lipid-based edible nanoparticles protect against experimental colitis[J]. Colloids and Surfaces B: Biointerfaces,2020,187:110747. doi: 10.1016/j.colsurfb.2019.110747
    [28]
    GAO Y, WEI Y, WANG Y, et al. Lycium barbarum: A traditional Chinese herb and a promising anti-aging agent[J]. Aging and Disease,2017,8(6):778−791. doi: 10.14336/AD.2017.0725
    [29]
    CHEYNIERV, COMTE G, DAVIES K M, et al. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology[J]. Plant Physiology and Biochemistry,2013,72(SI):1−20.
    [30]
    范彦娜, 赵俊香, 陈琨, 等. 枸杞ACE抑制肽成分提取及测定研究[J]. 中国卫生标准管理,2016,7(20):162−164. [FAN Y N, ZHAO J X, CHEN K, et al. Extraetion and determination of ACE inllibitory peptide from Chinese wolfberry fruit[J]. China Health Standard Management,2016,7(20):162−164.
  • Cited by

    Periodical cited type(9)

    1. 尹燕,李霞,李永才,王毅,冯炜弘,王筱姝,牛慧婷,李爱兵,王程. 不同热风干燥方式对兰州百合品质的影响. 保鲜与加工. 2025(02): 99-105 .
    2. 李改莲,韩琭丛,王广红,彭钰航,金听祥. 胡萝卜热泵干燥特性及动力学模型分析. 包装工程. 2024(01): 10-18 .
    3. 徐柳风,王学成,易兵,刘振峰,伍振峰,杨明. 中药材保质增效干燥预处理技术的研究现状、问题及对策. 中国医药工业杂志. 2024(04): 463-474 .
    4. 尹燕,李霞,李永才,王毅,冯炜弘,牛慧婷,李爱兵,刘娜娜. 微波-热风联合干燥方法对兰州百合品质的影响. 食品安全质量检测学报. 2024(10): 304-312 .
    5. 颜月玲,李芷瑶,文有青,于瑶,王海霞. 不同贮藏温度下鲜百合关键质量属性研究及保质期预测. 食品安全质量检测学报. 2024(15): 83-92 .
    6. 王栋,赵一凡,邓志宁,孙浩媛,王勇,袁越锦. 烫漂预处理对苹果干燥过程中微观结构及质构品质的影响. 食品科学. 2024(22): 207-218 .
    7. 王莹,吴立国,孙丽萍,周宏举,周桓宇. 基于Weibull函数的平贝母热风干燥特性. 农机化研究. 2022(05): 249-254 .
    8. 金听祥,王广红,彭钰航,马瑜聪,张盼,曹泷. 不同预处理方式对胡萝卜热泵干燥品质的影响. 食品与发酵工业. 2022(07): 173-178 .
    9. 刘鹤,焦俊华,田友,刘佳敖,王燕令,吴学红. 马铃薯片热风干燥特性及收缩动力学模型. 食品工业科技. 2022(11): 58-64 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views (173) PDF downloads (27) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return