SUN Ruiyang, XUAN Xiaoting, CUI Yan, et al. Analysis of Differential Metabolites between NFC and FC Bayberry Juice Based on UPLC-QTOF-MS[J]. Science and Technology of Food Industry, 2023, 44(15): 275−282. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080132.
Citation: SUN Ruiyang, XUAN Xiaoting, CUI Yan, et al. Analysis of Differential Metabolites between NFC and FC Bayberry Juice Based on UPLC-QTOF-MS[J]. Science and Technology of Food Industry, 2023, 44(15): 275−282. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080132.

Analysis of Differential Metabolites between NFC and FC Bayberry Juice Based on UPLC-QTOF-MS

More Information
  • Received Date: August 14, 2022
  • Available Online: June 05, 2023
  • This study analyzed the differential composition between from concentrate (FC) and not from concentrate (NFC) bayberry juices by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). NFC and FC bayberry juice were distinguished from each other by orthogonal partial least squares discriminant analysis, and 9 compounds that significantly differed in abundance between them were selected and identified according to the variable importance in the projection and the fold-change. By comparison, the content of antioxidant active components such as 4-sulfobenzoate, 5-methyltetrahydrofolic acid, cyanidin, daphnoretin, xanthotoxol and isoxanthopterin in FC bayberry juice were relatively low, whereas the bitter substances (neohesperidin, hesperidin and quercetin-3-O-neohesperidin) were relatively high. Metabolic pathways were analyzed on account of differential metabolites and five metabolic pathways with great differences were identified, among which phenylalanine metabolism, biosynthesis of flavonoids and flavonols were the key metabolic pathways of different metabolites in NFC and FC bayberry juice. This study revealed the difference of metabolites between NFC and FC bayberry juice, which provided theoretical reference for the processing and identification of NFC bayberry juice.
  • [1]
    YU H, XIE T, HE L, et al. Characterization of aroma compounds in bayberry juice by sensory evaluation and gas chromatography-mass spectrometry[J]. Journal of Food Measurement and Characterization,2020,14(1):505−513. doi: 10.1007/s11694-019-00223-3
    [2]
    FANG Z, BHANDARI B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice[J]. Food Research International,2012,48(2):478−483. doi: 10.1016/j.foodres.2012.05.025
    [3]
    BARRECA D, GATTUSO G, BELLOCCO E, et al. Flavanones: Citrus phytochemical with health-promoting properties[J]. Biofactors,2017,43(4):495−506. doi: 10.1002/biof.1363
    [4]
    雷佳蕾. 非浓缩还原(NFC)苹果汁的同位素、多酚和DNA鉴伪方法的建立[D]. 西安: 陕西师范大学, 2020

    LEI J L. Establishment of a method for identification of isotopes, polyphenols and DNA for non-concentrated reduction (NFC) apple juice[D]. Xi'an: Shaanxi Normal University, 2020.
    [5]
    康孟利, 崔燕, 尚海涛, 等. 非热杀菌在NFC果汁上的应用前景[J]. 北方园艺,2016(18):190−193. [KANG M L, CUI Y, SHANG H T, et al. Application prospect of non-thermal sterilization on NFC juice[J]. Northern Horticulture,2016(18):190−193. doi: 10.11937/bfyy.201618047

    KANG M L, CUI Y, SHANG H T, et al. Application prospect of non-thermal sterilization on NFC juice[J]. Northern Horticulture, 2016, (18): 190-3. doi: 10.11937/bfyy.201618047
    [6]
    SUN R, XING R, ZHANG J, et al. Authentication and quality evaluation of not from concentrate and from concentrate orange juice by HS-SPME-GC-MS coupled with chemometrics[J]. LWT-Food Science and Technology,2022:162.
    [7]
    JACQUES B. Control of authenticity of fruit juices by isotopic analysis[J]. Journal of AOAC International,1973,56(3):739−742. doi: 10.1093/jaoac/56.3.739
    [8]
    ZHANG J, WANG P, WEI X, et al. A metabolomics approach for authentication of Ophiocordyceps sinensis by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry[J]. Food Research International,2015,76:489−497. doi: 10.1016/j.foodres.2015.07.025
    [9]
    YIN Q C, JI J B, ZHANG R H, et al. Identification and verification of key taste components in wampee using widely targeted metabolomics[J]. Food Chemistry-X,2022:13.
    [10]
    杨天铭, 刘渝辰, 梁露, 等. 基于UPLC-QTOF-MS技术探究黄龙病脐橙与正常脐橙的成分差异[J]. 南昌大学学报(理科版),2022,46(4):454−463. [YANG T M, LIU Y H, LIANG L, et al. Exploring the compositional differences between Huanglongbing navel oranges and normal navel oranges based on UPLC-QTOF-MS technology[J]. Journal of Nanchang University (Science Edition),2022,46(4):454−463. doi: 10.3969/j.issn.1006-0464.2022.04.011

    YANG T M, LIU Y H, LIANG L, et al. Exploring the compositional differences between Huanglongbing navel oranges and normal navel oranges based on UPLC-QTOF-MS technology[J]. Journal of Nanchang University (Science Edition), 2022, 46(4): 454-463. doi: 10.3969/j.issn.1006-0464.2022.04.011
    [11]
    屠燕, 孙连娜, 董志颖, 等. 基于UPLC-QTOF-MS技术分析不同产地丹参药材化学成分的差异[J]. 中药材,2021,44(6):1337−1342. [TU Y, SUN L N, DONG Z Y, et al. Analysis of differences in chemical constituents of salvia miltiorrhiza from different origins based on UPLC-QTOF-MS technique[J]. Chinese Materia Medica,2021,44(6):1337−1342. doi: 10.13863/j.issn1001-4454.2021.06.009

    TU Y, SUN L N, DONG Z Y, et al. Analysis of differences in chemical constituents of salvia miltiorrhiza from different origins based on UPLC-QTOF-MS technique[J]. Chinese Materia Medica, 2021, 44(6): 1337-1342. doi: 10.13863/j.issn1001-4454.2021.06.009
    [12]
    刘晗璐, 张九凯, 韩建勋, 等. 基于UPLC-QTOF-MS代谢组学技术的NFC和FC橙汁差异成分比较[J]. 食品科学,2021,42(6):229−237. [LIU H L, ZHANG J K, HAN J X, et al. Comparison of differential components in NFC and FC orange juice based on UPLC-QTOF-MS metabolomics technology[J]. Food Science,2021,42(6):229−237. doi: 10.7506/spkx1002-6630-20191014-106

    LIU H L, ZHANG J K, HAN J X, et al. Comparison of differential components in NFC and FC orange juice based on UPLC-QTOF-MS metabolomics technology [J]. Food Science, 2021, 42(6): 229-237. doi: 10.7506/spkx1002-6630-20191014-106
    [13]
    XU L, XU Z, KELLY S, et al. Integrating untargeted metabolomics and targeted analysis for not from concentrate and from concentrate orange juices discrimination and authentication[J]. Food Chemistry,2020,329(prepublish):127−130.
    [14]
    YANG X, LUO J, DUAN Y, et al. Simultaneous analysis of multiple pesticide residues in minor fruits by ultrahigh-performance liquid chromatography/hybrid quadrupole time-of-fight mass spectrometry[J]. Food Chemistry,2018,241:188−198. doi: 10.1016/j.foodchem.2017.08.102
    [15]
    WANG H Y, NI Y Y, HU X S, et al. Kinetics of amino acid loss in carrot juice concentrate during storage[J]. LWT-Food Science and Technology,2007,40(5):785−792. doi: 10.1016/j.lwt.2006.03.020
    [16]
    THEVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research,2015,14(8):3322−3335. doi: 10.1021/acs.jproteome.5b00354
    [17]
    黄浩, 余鹏辉, 赵熙, 等. 不同季节保靖黄金茶1号工夫红茶挥发性成分的HS-SPME-GC-MS分析[J]. 食品科学,2020,41(12):188−196. [HUANG H, YU P H, ZHAO X, et al. HS-SPME-GC-MS analysis of volatile components in Baojing golden Tea No.1 Gongfu black tea in different seasons[J]. Food Science,2020,41(12):188−196. doi: 10.7506/spkx1002-6630-20190721-265

    HUANG H, YU P H, ZHAO X, et al. HS-SPME-GC-MS analysis of volatile components in Baojing golden Tea No. 1 Gongfu black tea in different seasons[J]. Food Science, 2020, 41(12): 188-196. doi: 10.7506/spkx1002-6630-20190721-265
    [18]
    ZHANG G, WANG H, XIE W, et al. Comparison of triterpene compounds of four botanical parts from Poria cocos (Schw.) wolf using simultaneous qualitative and quantitative method and metabolomics approach[J]. Food Research International,2019,121:666−677. doi: 10.1016/j.foodres.2018.12.036
    [19]
    ANNUNZIATA F, PINNA C, DALLAVALLE S, et al. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities[J]. International Journal of Molecular Sciences,2020,21(13):4618. doi: 10.3390/ijms21134618
    [20]
    连增林, 刘康, 顾锦华, 等. 叶酸与5-甲基四氢叶酸的生物学特征与应用[J]. 中国食品添加剂,2022,33(2):230−239. [LIAN Z L, LIU K, GU J H, et al. Biological characteristics and application of folic acid and 5-methyltetrahydrofolate[J]. China Food Additives,2022,33(2):230−239.

    LIAN Z L, LIU K, GU J H, et al. Biological characteristics and application of folic acid and 5-methyltetrahydrofolate[J]. China Food Additives, 2022, 33(2): 230-239.
    [21]
    ISLAM M S. 小麦和鲜食玉米存贮及加工过程中的叶酸稳定性研究[D]. 北京: 中国农业科学院, 2021

    ISLAM M S. 小麦和鲜食玉米存贮及加工过程中的叶酸稳定性研究[D]. 北京: 中国农业科学院, 2021. [ISLAM M S. Study on folic acid stability during storage and processing of wheat and fresh corn[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
    [22]
    吴莉, 齐婧敏, 吕庆章. 六种花青素类化合物抗氧化活性的DFT研究[J]. 化学研究与应用,2014,26(7):997−1003. [WU L, QI J M, LÜ Q Z. DFT study on antioxidant activity of six anthocyanins[J]. Chemical Research and Applications,2014,26(7):997−1003. doi: 10.3969/j.issn.1004-1656.2014.07.007

    WU L, QI J M, LV Q Z. DFT study on antioxidant activity of six anthocyanins[J]. Chemical Research and Applications, 2014, 26(7): 997-1003. doi: 10.3969/j.issn.1004-1656.2014.07.007
    [23]
    CABRITA L, FOSSEN T, ANDERSEN O M. Colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions[J]. Food Chemistry,2000,68(1):101−107. doi: 10.1016/S0308-8146(99)00170-3
    [24]
    张燕, 谢玫珍, 廖小军. 热和紫外辐照对红莓花色苷稳定性的影响[J]. 食品与发酵工业,2005(3):37−40. [ZHANG Y, XIE M Z, LIAO X J. Effects of heat and ultraviolet irradiation on the stability of cranberry anthocyanins[J]. Food and Fermentation Industry,2005(3):37−40. doi: 10.3321/j.issn:0253-990X.2005.03.010

    ZHANG Y, XIE M Z, LIAO X J. Effects of heat and ultraviolet irradiation on the stability of cranberry anthocyanins [J]. Food and Fermentation Industry, 2005, (3): 37-40. doi: 10.3321/j.issn:0253-990X.2005.03.010
    [25]
    周明, 徐明生, 陈金印, 等. ‘修水化红’甜橙皮热风干燥动力学及其品质特性分析[J]. 食品科学,2020,41(11):141−149. [ZHOU M, XU M S, CHEN J Y, et al. Analysis of hot air drying kinetics and quality characteristics of 'Xiushuihuahong' sweet orange peel[J]. Food Science,2020,41(11):141−149. doi: 10.7506/spkx1002-6630-20190710-132

    ZHOU M, XU M S, CHEN J Y, et al. Analysis of hot air drying kinetics and quality characteristics of 'Xiushuihuahong' sweet orange peel [J]. Food Science, 2020, 41(11): 141-149. doi: 10.7506/spkx1002-6630-20190710-132
    [26]
    刘意隆. 杨梅黄酮醇鉴定、纯化及其抑制α-葡萄糖苷酶的构效机制研究[D]. 杭州: 浙江大学, 2020

    LIU Y L. Identification, purification and structure-activity mechanism of myricetin flavonols and their inhibition of α-glucosidase[D]. Hangzhou: Zhejiang University, 2020.
    [27]
    张娜威, 潘思轶, 范刚, 等. 柑橘果汁中的苦味物质及脱苦技术研究进展[J]. 华中农业大学学报,2021,40(1):40−48. [ZHANG N W, PAN S Y, FAN G, et al. Research progress on bitter substances in citrus juice and its debittering technology[J]. Journal of Huazhong Agricultural University,2021,40(1):40−48. doi: 10.13300/j.cnki.hnlkxb.2021.01.005

    ZHANG N W, PAN S Y, FAN G, et al. Research progress on bitter substances in citrus juice and its debittering technology [J]. Journal of Huazhong Agricultural University, 2021, 40(1): 40-48. doi: 10.13300/j.cnki.hnlkxb.2021.01.005
    [28]
    LI S, WANG Z, DING F, et al. Content changes of bitter compounds in 'Guoqing No.1' satsuma mandarin (Citrus unshiu Marc.) during fruit development of consecutive 3 seasons[J]. Food Chemistry,2014,145:963−969. doi: 10.1016/j.foodchem.2013.09.040
    [29]
    FISHER F J, A W T. A high-pressure liquid chromatographic method for the resolution and quantitation of naringin and naringenin rutinoside in grapefruit juice[J]. Journal of Agricultural and Food Chemistry,1976,24(4):898−899. doi: 10.1021/jf60206a026
    [30]
    丁胜华, 王蓉蓉, 李高阳, 等. 干燥温度对橙皮干燥动力学、酚类物质及抗氧化特性的影响[J]. 中国食品学报,2016,16(11):137−144. [DING S H, WANG R R, LI G Y, et al. Effects of drying temperature on drying kinetics, phenolic substances and antioxidant properties of orange peel[J]. Chinese Journal of Food Science,2016,16(11):137−144. doi: 10.16429/j.1009-7848.2016.11.019

    DING S H, WANG R R, LI G Y, et al. Effects of drying temperature on drying kinetics, phenolic substances and antioxidant properties of orange peel [J]. Chinese Journal of Food Science, 2016, 16(11): 137-144. doi: 10.16429/j.1009-7848.2016.11.019
    [31]
    KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research,2000,28(1):27−30. doi: 10.1093/nar/28.1.27
    [32]
    XIA J, SINELNIKOV I V, HAN B, et al. Metabo analyst 3.0-making metabolomics more meaningful[J]. Nucleic Acids Research,2015,43(W1):W251−W257. doi: 10.1093/nar/gkv380
    [33]
    王玉, 杨雪, 杨蕊菁, 等. 调控苯丙烷类生物合成的MYB类转录因子研究进展[J]. 安徽农业大学学报,2019,46(5):859−864. [WANG Y, YANG X, YANG R J, et al. Research progress of MYB transcription factors regulating phenylpropane biosynthesis[J]. Journal of Anhui Agricultural University,2019,46(5):859−864. doi: 10.13610/j.cnki.1672-352x.20191122.018

    WANG Y, YANG X, YANG R J, et al. Research progress of MYB transcription factors regulating phenylpropane biosynthesis [J]. Journal of Anhui Agricultural University, 2019, 46(5): 859-864. doi: 10.13610/j.cnki.1672-352x.20191122.018
    [34]
    赵建存, 宋英杰, 王振圣, 等. 苯丙氨酸/酪氨酸代谢途径及其相关产物与非酒精性脂肪肝的关系[J]. 中国普外基础与临床杂志,2022,29(3):404−409. [ZHAO J C, SONG Y J, WANG Z S, et al. Relationship between phenylalanine/tyrosine metabolic pathway and its related products and nonalcoholic fatty liver disease[J]. Chinese Journal of Basic and Clinical Medicine,2022,29(3):404−409.

    ZHAO J C, SONG Y J, WANG Z S, et al. Relationship between phenylalanine/tyrosine metabolic pathway and its related products and nonalcoholic fatty liver disease[J]. Chinese Journal of Basic and Clinical Medicine, 2022, 29(3): 404-409.
    [35]
    曹运琳, 邢梦云, 徐昌杰, 等. 植物黄酮醇生物合成及其调控研究进展[J]. 园艺学报,2018,45(1):177−192. [CAO Y L, XING M Y, XU C J, et al. Research progress in plant flavonol biosynthesis and its regulation[J]. Journal of Horticulture,2018,45(1):177−192. doi: 10.16420/j.issn.0513-353x.2017-0306

    CAO Y L, XING M Y, XU C J, et al. Research progress in plant flavonol biosynthesis and its regulation[J]. Journal of Horticulture, 2018, 45(1): 177-192. doi: 10.16420/j.issn.0513-353x.2017-0306
    [36]
    吴振, 李红, 王勇德, 等. 不同热处理温度对蓝莓果汁在冷藏过程中多酚和黄酮含量的影响[J]. 食品与发酵工业,2019,45(17):209−215. [WU Z, LI H, WANG Y D, et al. Effects of different heat treatment temperatures on the contents of polyphenols and flavonoids in blueberry juice during cold storage[J]. Food and Fermentation Industry,2019,45(17):209−215. doi: 10.13995/j.cnki.11-1802/ts.020573

    WU Z, LI H, WANG Y D, et al. Effects of different heat treatment temperatures on the contents of polyphenols and flavonoids in blueberry juice during cold storage[J]. Food and Fermentation Industry, 2019, 45(17): 209-215. doi: 10.13995/j.cnki.11-1802/ts.020573
  • Related Articles

    [1]MA Yue, LIU Xin, WU Mengguo, ZHANG Xuewei, WEI Xuan, HOU Dongdong, JIANG Zhanmei, HOU Juncai. Effect of Sterilization Conditions on Quality Characteristics and Storage Stability of Goat Milk[J]. Science and Technology of Food Industry, 2023, 44(9): 68-73. DOI: 10.13386/j.issn1002-0306.2022050060
    [2]CHEN Xianliu, WANG Suru, CHEN Boyu, XIE Defang. Storage Stability, Residual Digestion and Chronic Dietary Exposure Assessment of Oxine-copper in Citrus[J]. Science and Technology of Food Industry, 2022, 43(22): 1-6. DOI: 10.13386/j.issn1002-0306.2022030257
    [3]TU Lian, LÜ Chunqiu, WANG Jie, LIANG Qinmei, ZHONG Weihua, LIN Ying. Characterization of Taro Starch and Its Stabilized Pickering Emulsion[J]. Science and Technology of Food Industry, 2022, 43(18): 72-79. DOI: 10.13386/j.issn1002-0306.2021120081
    [4]XU Keping, WANG Jiali, LIU Chengmei, DENG Lizhen, DAI Taotao, CHEN Mingshun, CHEN Jun. Preparation Process and Storage Stability of Whole Sesame Milk[J]. Science and Technology of Food Industry, 2022, 43(15): 175-183. DOI: 10.13386/j.issn1002-0306.2021100075
    [5]CHEN Jun, FANG Ruilin, LIANG Yazhen, LI Changhong, LI Yuting, DAI Taotao, LIU Chengmei. Study on Preparation and Storage Stability of Whole Soybean Milk by High-pressure Microfluidizer[J]. Science and Technology of Food Industry, 2021, 42(19): 173-181. DOI: 10.13386/j.issn1002-0306.2020110215
    [6]MU Tanhang, YE Jia, YANG Mingjian, MIAO Junling, WANG Xinjian, ZHOU Xiaotong, ZHANG Wenwen. Optimization of Extraction Technology and Storage Stability of Polyphenols from Pomegranate Peel[J]. Science and Technology of Food Industry, 2021, 42(11): 142-146. DOI: 10.13386/j.issn1002-0306.2020060202
    [7]Haoyu ZHANG, Lin MA, Qiang SUN, Jinian HUANG, Jing YOU, Xing MENG, Guohui SONG. Effects of Processing Techniques on Stability of Sesame Paste[J]. Science and Technology of Food Industry, 2021, 42(8): 42-48. DOI: 10.13386/j.issn1002-0306.2020060294
    [8]MA lin, SONG Guo-hui, SUN Qiang, ZHANG Xun, SUN Xiao-jing, HUANG Ji-nian. Effect of Granulation on the Storage Stability and Flavour of Sesame Salt and Establishment of Shelf-life Prediction Model[J]. Science and Technology of Food Industry, 2020, 41(20): 26-32. DOI: 10.13386/j.issn1002-0306.2020.20.005
    [9]SONG Guo-hui, LU Xin, SUN Qiang, ZHANG Li-xia, HUANG Ji-nian, CAO Shi-na. Effect of sesame components on sesame paste storage stability[J]. Science and Technology of Food Industry, 2017, (18): 25-29. DOI: 10.13386/j.issn1002-0306.2017.18.005
    [10]LIAO Hong-mei, DING Zhan-sheng, ZHONG Kui, ZHAO Jun-jie, LIAO Xiao-jun. Study on effect of high pressure carbon dioxide on storage stability of fresh pear juice[J]. Science and Technology of Food Industry, 2013, (23): 131-133. DOI: 10.13386/j.issn1002-0306.2013.23.089
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (116) PDF downloads (13) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return